EMBEDDING NUMBERS FOR FINITE GROUPS

JOHN ERNEST

This note is concerned with the following problem. Let H denote a subgroup of a finite group G and let L denote a linear or one dimensional representation (i.e., a character) of H. We assume throughout that the field F is algebraically closed and is either of characteristic 0 or of prime characteristic which does not divide the order of any groups under consideration. Let $G|L$ denote the corresponding induced representation of G. How many distinct (i.e., nonequivalent) irreducible representations appear in the decomposition of $G|L$ into irreducible parts? (This number is just the central intertwining number of $G\mid L$, which is denoted by $\mathfrak{c}(G|L)$. Cf. [1].) More specifically, we are interested in determining an upper bound on the number of distinct irreducible representations which will appear, purely in terms of the way H is embedded in G, and in terms which do not depend on the particular linear representation L of H. Two such bounds come quickly to mind. The number of classes (of conjugates) of the super group G, which we denote $\{G:e\}$, is clearly an upper bound. Dimension considerations also give $[G:77]$ as an upper bound. We now introduce a new group theoretic invariant which heuristically is a measure of the manner in which the classes of G are distributed among the H-cosets of G.

DEFINITION. Let H be a (not necessarily normal) subgroup of a finite group G. For each normal subset N of G, let $\phi_1(N)$ denote the number of classes (of conjugates) of G contained in N. Let $\phi_2(N)$ denote the number of right H-cosets of G which have nonzero intersection with N. Let $\phi(N) = \{G:e\} - \phi_1(N) + \phi_2(N)$. We then define the embedding number of H in G, denoted by $(G:H)$, to be the minimum of the $\phi(N)$, as N is taken over all normal subsets of G. We remark that a definition of ϕ_2 using left cosets would yield the same value for $(G:H)$ since N^{-1} intersects the same number of left cosets as N does right cosets.

Taking $N = \{e\}$ where e is the identity element of the group we have $(G:H) \leq \{G:e\}$. Taking $N = G$ we have $(G:H) \leq [G:H]$. If $H \neq G$, it is easy to verify that $(G:H) > 1$. If H is a proper normal subgroup, then, taking $N = H$ we have $(G:H) < \{G:e\}$. In the case where H is a normal subgroup of G, another number associated with the embedding of H in G is the number of classes in the factor group G/H. We call this the class number of H in G and denote it by $\{G:H\}$.

Received by the editors May 31, 1961.

1 National Science Foundation Fellow.
Proposition 1. If \(H \) is a normal subgroup of a finite group \(G \), then \(\{G:H\} \leq (G:H) \).

Proof. Suppose \((G:H) = m \). Then there exists a normal subset, say \(N \) of \(G \), such that \(N \) contains \(n \) classes of \(G \) and intersects \(c \) \(H \)-cosets such that \(m = \{G:e\} - n + c \). Note that \(n \geq c \) since \(m = (G:H) \leq \{G:e\} \). Let \(\overline{N} \) denote the smallest normal subset of the factor group \(G/H \), containing the \(c \) \(H \)-cosets which have nonzero intersection with \(N \). Then the number of classes of \(G/H \) contained in \(\overline{N} \) is less than or equal to \(c \). Let \(N' = \{x \in G \mid x \text{ is contained in some } H \text{-coset belonging to } \overline{N}\} \). Then \(N' \) is a normal subset of \(G \) such that \(N \subset N' \) and thus \(N' \) contains at least \(n \) classes of \(G \). Then \((G - N') \) is a normal subset of \(G \) and contains at most \(\{G:e\} - n \) classes of \(G \). Thus \((G/H - \overline{N}) \) contains at most \(\{G:e\} - n \) classes of \(G/H \). Further \(\overline{N} \) contains at most \(c \) classes. Hence \(G/H \) contains at most \(\{G:e\} - n + c = m \) classes. Hence \(\{G:H\} \leq (G:H) \).

Thus in general we have \(\{G:H\} \leq (G:H) \leq [G:H] \). If \(G/H \) is abelian this degenerates to \(\{G:H\} = (G:H) = [G:H] \). Now that we have a relative idea of how this new "embedding number" compares with the group theoretic invariants usually associated with the embedding of \(H \) in \(G \), we proceed to show the significance of \((G:H) \) in the theory of monomial representations. We must first prove a preliminary result.

Lemma. Let \(H \) be a subgroup of a finite group \(G \) and let \(L \) denote a linear representation of \(H \), over the field \(F \). Let \(G \mid L \) denote the corresponding induced representation of \(G \). Let \(D_1, D_2, \cdots, D_{n+1} \) denote distinct classes of \(G \) and let \(S_i = \sum_{x \in D_i} (G \mid L)x \), for \(i = 1, 2, \cdots, n+1 \). If these \(n+1 \) classes are completely contained in the union of \(n \) right \(H \)-cosets of \(G \), then the \(S_i \), \(i = 1, 2, \cdots, n+1 \), are linearly dependent over \(F \).

Proof. Index the right \(H \)-cosets of \(G \), \(\{H \sigma_j \}, j = 1, 2, \cdots, k \), in such a way that \(D_i \subset \bigcup_{j=1}^{n+1} H \sigma_j \), for \(i = 1, 2, \cdots, n+1 \). Then \(\{\sigma_j^{-1} : j = 1, 2, \cdots, k\} \) form a set of representatives of the left \(H \)-cosets of \(G \). By [1, Corollary to Theorem 3], it is sufficient to show that there exists \(\alpha_1, \alpha_2, \cdots, \alpha_{n+1} \in F \) not all zero, such that \(\sum_{i=1}^{n+1} \alpha_i \beta_{ij} = 0 \) for \(j = 1, 2, \cdots, k \), where \(\beta_{ij} = \sum_{x \in \sigma^{-1} D_i \cap H} Lx \) and \(\beta_{ij} = 0 \) if \(\sigma_j^{-1} D_i \cap H \) is empty. Since \(L \) is linear we have \(\beta_{ij} \in F \). Consider the set of homogeneous linear equations

\[
\sum_{i=1}^{n+1} \beta_{ij} x_i = 0, \quad j = 1, \cdots, n.
\]

This system has \(n \) equations and \(n+1 \) unknowns and thus has a non-
trivial solution, say $x_i = \alpha_i \in F$. Hence $\sum_{i=1}^{n+1} \alpha_i \beta_i = 0$ for $j = 1, \ldots, n$. By our indexing of the H-cosets we have that $\sigma_j^{-1} D_j \cap H = D_j \sigma_j^{-1} \cap H = (D_i \cap H \sigma_j) \sigma_j^{-1}$ is empty (and thus $\beta_j = 0$), for $j > n$ and $i = 1, \ldots, n+1$. Hence $\sum_{i=1}^{n+1} \alpha_i \beta_j = 0$ for $j = 1, \ldots, k$.

Theorem. Let H denote a subgroup of a finite group G and let L be a linear representation of H. Then the number of distinct irreducible representations appearing in the decomposition of the induced representation $G \mid L$ is less than or equal to $(G: H)$.

Proof. There exists a normal subset N of G such that $(G: H) = n - m + \phi_2(N)$, where $n = \{G: e\}$ and $m = \phi_1(N)$. Let C_1, C_2, \ldots, C_m denote the classes of G which are contained in N and let $C_{m+1}, C_{m+2}, \ldots, C_n$ denote the remaining classes of G. Let $S_i = \sum_{x \in C_i} (G \mid L)x$, for $i = 1, 2, \ldots, n$. By the previous lemma there are at most $\phi_1(N)$ elements among the S_i, $i = 1, 2, \ldots, m$, which are linearly independent over the field F. Hence there are at most $n - m + \phi_2(N) = (G: H)$ linearly independent elements among the S_i, $1 \leq i \leq m$. By [1, Theorem 1], $\mathfrak{c}(G \mid L) \leq (G: H)$. That is to say, the number of distinct irreducible representations appearing in the decomposition of $G \mid L$ is less than or equal to $(G: H)$.

Corollary. Let H denote an abelian subgroup of a finite group G. Then $\{G: e\} \leq (G: H)[H: e]$.

Proof. Let L denote the regular representation of H. Then $\mathfrak{c}(L) = \{H: e\} = [H: e]$ and each irreducible representation appearing in the decomposition of L is linear. Thus by the theorem $\mathfrak{c}(G \mid L) \leq (G: H)[H: e]$. But $G \mid L$ is the regular representation of G and thus $\mathfrak{c}(G \mid L) = \{G: e\}$.

Remark. If H is a normal subgroup of G and L is the one-dimensional identity representation of H, then $G \mid L$ contains exactly $\{G: H\}$ distinct irreducible representations of G. Indeed it is sufficient to note that $G \mid L$ is the composition of the natural projection of G on G/H and the regular representation of G/H. The following proposition gives a sufficient condition for $\{G: H\}$ to be an upper bound to the number of distinct irreducible representations appearing in the decomposition of $G \mid L$, where L is any linear representation of H. The referee conjectures that $\{G: H\}$ is such an upper bound whenever H is a normal subgroup of G.

Proposition 2. Suppose H is a normal subgroup of G such that each class of H is also a class of G. Then for every linear representation L of H, $G \mid L$ contains at most $\{G: H\}$ distinct irreducible representations.

We are indebted to the referee for this remark.
Proof. The projection of each class of G onto G/H is contained in a class of G/H. Suppose D_1 and D_2 are two classes of G whose projections on G/H are contained in the same class of G/H. Then the projections of D_1 and D_2 on G/H have nonempty intersection. Thus there exists $x \in D_1$, $y \in D_2$, and $h \in H$ such that $x = hy$.

Note that under our hypothesis $(G|L)_{gh^{-1}} = L_h I$ for all $g \in G$, where I is the identity operator on $3C(G|P)$. Indeed for all $g, z \in G$, and $f \in 3C(G|L)$ we have $(G|L)_{gh^{-1}} f(z) = f(zghg^{-1}) = L_{zghg^{-1}} f(z) = L_h f(z)$, where we have used the fact that L is constant on the classes of H.

Let n_i denote the number of elements in the class D_i, for $i = 1, 2$. Then we have

$$S_1 = \sum_{z \in D_1} (G|L)_z = \sum_{g \in G} (G|L)_{ggh^{-1}}$$

$$= \sum_{g \in G} (G|L)_{gh^{-1}} f(g) = \sum_{g \in G} (G|L)_{gh^{-1}} f(z)$$

$$= L_h \sum_{g \in G} (G|L)_{gh^{-1}} f(z)$$

$$= \frac{n_1}{n_2} L_h \sum_{z \in D_2} (G|L)_z$$

Thus $\{ G:H \}$ is an upper bound for the number of linearly independent conjugate sums S_i and thus also for the number of distinct irreducible representations appearing in the decomposition of $(G|L)$.

For the theorem to have significance it is necessary to show that $(G:H)$ is indeed a better upper bound than those already known, namely $\{ G:e \}$ and $[G:H]$. Let G be the symmetric group on 4 letters. Let H denote the normal abelian subgroup of G of order 4. Then all the numbers associated with the embedding of H in G are distinct. Indeed $[G:H] = 6$, $\{ G:e \} = 5$, $(G:H) = 4$ and $\{ G:H \} = 3$.

It would be interesting to know if the embedding number $(G:H)$ has any significance in any other context than in the theory of group representations which are induced from characters.

Reference