

University of British Columbia and
University of Florida

CARDINALITY OF LEVEL SETS OF RADEMACHER SERIES
WHOSE COEFFICIENTS FORM A GEOMETRIC PROGRESSION

W. A. BEYER

1. Introduction. With 0 < r < 1, put

$$\beta*(\alpha, r) = \left\{ x \left| \sum_{i=1}^{\infty} r^i R_i(x) = \alpha; 0 < x \leq 1 \right. \right\}$$

where $R_i(x)$ is the ith Rademacher function and $|\alpha| < \sum_{i=1}^{\infty} r^i$. This paper discusses the cardinality of the set $\beta*(\alpha, r)$ [hereafter denoted by card $\beta*(\alpha, r)$]. The only previous discussion known to the author is a remark of Levy [4]. Denote $(\sqrt{5} - 1)/2$ by δ. In [2] we have shown that if $1 > r > \delta$, then the Hausdorff dimension of $\beta*$ is $\leq 1/n$ where n is the least n_0 such that

$$n_0 > \left\{ \log (2r - 1) - \log(r^2 + r - 1) \right\}/(-\log r).$$

Note that as $r \to \delta +$, $n \to \infty$. Hence card $\beta*(\alpha, r) = c$ (cardinal number of the continuum) for $1 > r > \delta$. It is known that card $\beta*(\alpha, r) \leq 1$ for $0 < r < 1/2$; $\beta*(\alpha, r) = 1$ or 2 for $r = 1/2$. This leaves the range $1/2 < r \leq \delta$ in question. The question is completely settled for $r = \delta$ by Theorem 1. The range $1/2 < r < \delta$ is discussed briefly in §4.

Presented to the Society, January 22, 1959 under the title Rademacher series with geometric coefficients; received by the editors April 4, 1961.

1 The work reported in this document was performed by Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology with the joint support of the U. S. Army, Navy, and Air Force under Air Force Contract AF 19(604)-5200.
We denote the set of algebraic integers in the quadratic field \(k(\sqrt{5}) \) by \(H \) and the cardinal number of the integers by \(\aleph_0 \). Our principal result is

Theorem 1. If \(\alpha \in H \), then \(\operatorname{card} \beta^*(\alpha, \delta) = \aleph_0 \). If \(\alpha \notin H \), then \(\operatorname{card} \beta^*(\alpha, \delta) = \mathfrak{c} \).

Since \(R_i(x) = 1 - 2\epsilon_i(x) \) where \(\epsilon_i(x) \) is the \(i \)th digit of the (unique) nonterminating binary expansion of \(x \in (0, 1] \) and since \(\sum_{i=1}^{\infty} r^i R_i(x) \) is absolutely convergent, it is sufficient to consider the sets

\[
\beta(\alpha, r) = \left\{ x \left| \sum_{i=1}^{\infty} r^i \epsilon_i(x) = \alpha; 0 < x \leq 1 \right. \right\}
\]

with \(0 < \alpha < \sum_{i=1}^{\infty} r^i \).

2. Preliminaries.

Definition 1. For \(x \in (0, 1] \) and \(0 < r^2 < 1/2 \), \(T_r(x) \) is the plane point:

\[
\left[\frac{1 - r^2}{r} \sum_{i=1}^{\infty} \epsilon_{2i-1}(x) r^{2i-1}, \frac{1 - r^2}{r} \sum_{i=1}^{\infty} \epsilon_{2i}(x) r^{2i-1} \right].
\]

Definition 2. For \(0 < r^2 \leq 1/2 \), \(C_r \) is the Cantor type perfect set of constant ratio \(r^2 \) of dissection formed in \([0, 1]\) (see [5]); i.e., \(\xi_i = r^i \) for all \(i \). We define \(B(C_r) \) as the set of end points of the removed intervals plus the points 0 and 1. We put \(I(C_r) = C_r - B(C_r) \). We define \(C_r^2 \) as the Cartesian product \(C_r \times C_r \). We also define the quantity \(B(C_r^2) = B(C_r) \times B(C_r) \).

Lemma 1. The right-hand end points in \(B(C_r) \) have the form \([(1-r^2)/r] \sum_{i=1}^{\infty} \epsilon_i r^{2i-1} \). The left-hand end points in \(B(C_r) \) have the form \([(1-r^2)/r] \sum_{i=1}^{\infty} \epsilon_i r^{2i-1} + \sum_{i=p+1}^{\infty} r^{2i-1} \). The points of \(I(C_r) \) have the form \([(1-r^2)/r] \sum_{i=1}^{\infty} \epsilon_i r^{2i-1} \) with an \(\infty \) of the \(\epsilon_i \) equal to a 0 and an \(\infty \) of the \(\epsilon_i \) equal to 1. Here \(\epsilon_i = 0, 1 \).

Proof. See [5].

We take as evident

Lemma 1a. \(T_r(\beta(\alpha, r)) \subseteq l_{a, \alpha} \cap C_r^2 \) where \(l_{a, \alpha} \) is the line \(r x_1 + r^2 x_2 = (1-r^2) \alpha \), where \(x_1, x_2 \) are the coordinates of a plane point.

3. Proof of Theorem 1. A sequence of integers \(\{ \epsilon_i \} (i = 1, 2, \ldots) \) is called a representation of \(\alpha \) if \(\epsilon_i = 0 \) or 1 and \(\alpha = \sum_{i=1}^{\infty} \epsilon_i r^i \). We denote the sequence by \(R(\alpha) \). \(R(\alpha) = \{ \epsilon_i \} \) is canonical if \(\alpha = \sum_{i=1}^{\infty} \epsilon_i r^i < r^n \) for every \(n \) for which \(\epsilon_n = 0 \). We then write \(\alpha = \epsilon_1 \epsilon_2 \cdots \). We denote such \(R(\alpha) \) by \(R_c(\alpha) \).
In the remainder of this section, we take \(r = \delta \). Each \(\alpha \) has a unique \(R(\alpha) \). Bergman [1] notes that \(R(\alpha) \) is finite (terminates in zeros) if and only if \(\alpha \in H \). On noting that \(r \) satisfies \(1 = r + r^3 \), \(r = \sum_{i=1}^{\infty} r^{2i} \) and \(1 = \sum_{i=2}^{\infty} r^i \), we obtain

Lemma 2. \(R(\alpha) \) is canonical if and only if it does not terminate in a sequence of \(\text{"01" pairs} \) and \(\text{no \(\text{"11" pairs} \) occur anywhere after the first zero.}

Remark. It follows from Theorem 2 of [3] that the Hausdorff dimension of the set of \(x \in (0, 1) \) identified with canonical \(R(\alpha) \) is \(- \log_2 5\).

Lemma 3. If \((x_1, x_2) \in I_{x_1, x_2} \cap C_r^2 \), \(x_1 = \sum_{i=1}^{\infty} e_i r^{2i-1} \), \(x_2 = \sum_{i=1}^{\infty} e_i r^{2i-1} \), then \(\{e_i\} \) \((i = 1, 2, \ldots)\), where \(e_{2i-1} = e_i^1 \) \((i = 1, 2, \ldots)\) and \(e_{2i} = e_i^2 \) \((i = 1, 2, \ldots)\) is an \(R(\alpha) \). We then say that \(R(\alpha) \) is a form resulting from \(r x_1 + r^2 x_2 \).

Proof. \(\sum_{i=1}^{\infty} e_i r^i = \sum_{i=1}^{\infty} e_{2i-1} r^{2i-1} + \sum_{i=1}^{\infty} e_{2i} r^{2i} = \sum_{i=1}^{\infty} e_i r^{2i-1} + \sum_{i=1}^{\infty} e_i r^{2i} = x_1 + r x_2 = \alpha \).

Lemma 4. If \(\alpha \in H \) and \((x_1, x_2) \in I_{x_1, x_2} \cap C_r^2 \), then \((x_1, x_2) \in B(C_r^2)\).

Proof. Suppose \((x_1, x_2) \notin B(C_r^2)\). At least one of the \(x_1 \) or \(x_2 \) is in \(I(C_r^2) \) and hence has the form \(\sum_{i=1}^{\infty} e_i r^{2i-1} \) with an \(\infty \) of the \(e_i \) equal to 1 and an \(\infty \) equal to 0.

Case I. Suppose \(x_1 \) and \(x_2 \) are both in \(I(C_r^2) \). The \(R(\alpha) \) form resulting from \(r x_1 + r^2 x_2 \) must have an \(\infty \) of 1's, an \(\infty \) of 0's, and cannot terminate in a sequence of \(\text{"01" pairs} \). This \(R(\alpha) \) must therefore contain either (a) an \(\infty \) of \(\text{"11" pairs} \) and an \(\infty \) of 0's or (lb) an \(\infty \) of \(\text{"00" pairs} \) and an \(\infty \) of 1's.

In case (a), we have an \(\infty \) of \(\text{"011" triplets} \) in \(R(\alpha) \). Replace these triplets with \(\text{"100" triplets} \) to obtain a new \(R(\alpha) \). Thus, we need consider only case (b). Suppose case (b) holds. In \(R(\alpha) \), define blocks of digits \(N(i) \) \((i = 1, 2, \ldots)\) with \(N(i) \) as the block beginning with the \(i \)th \(\text{"00" pair} \) and extending to, but not including, the \((i+1)\)st \(\text{"00" pair} \). In \(N(i) \), replace any \(\text{"011" triplet} \) by a \(\text{"100" triplet} \). Repeat the operation until \(N(i) \) is exhausted of \(\text{"011" triplets} \). The result is a new \(R(\alpha) \) with an \(\infty \) of \(\text{"00" pairs} \) and isolated 1's. This \(R(\alpha) \) is, by Lemma 2, canonical. It has an \(\infty \) of 1's. Hence its value cannot be \(\alpha \).

Case II. Suppose \(x_1 \in B(C_r^2) \) and \(x_2 \in I(C_r^2) \) and \(x_1 = \sum_{i=1}^{\infty} e_i r^{2i-1} \) with \(e_1 = 1 \). Consider the form \(R(\alpha) \) resulting from \(r x_1 + r^2 x_2 \). Let \(N \) be the block consisting of the first \(2n \) digits in \(R(\alpha) \). In \(N \) replace any \(\text{"011" triplet} \) by a \(\text{"100" triplet} \). Repeat the operation until \(N \) is exhausted
of "011" triplets. The resulting $R(\alpha)$ is, by Lemma 2, canonical and contains an ∞ of 1's, and hence cannot represent α.

Suppose $x_1 = \sum_{i=1}^{n} \epsilon_i r^{2i-1} + \sum_{i=n+2}^{\infty} r^{2i-1}$. A contradiction is obtained as in Case I.

Case III. Suppose $x_1 \in I(C)$ and $x_2 \in B(C)$. This case is similar to Case II. This completes the proof of Lemma 4.

Corollary to Lemma 4. If $\alpha \in H$, then $T_r(\beta(\alpha, r)) \subseteq B(C)$.

Lemma 5. If $\alpha \in H$, then $\text{card} \ \beta(\alpha, r) \leq \aleph_0$.

Proof. From the fact that the mapping T_r is 1-1, the above corollary, and the countability of $B(C)$, we have

$$\text{card} \ \beta(\alpha, r) = \text{card} \ T_r(\beta(\alpha, r)) \leq \text{card} \ B(C) = \aleph_0.$$

Lemma 6. α has exactly \aleph_0 representations or $c(=2^{\aleph_0})$ representations according as $R_c(\alpha)$ is finite or is infinite (i.e., does not terminate in 0's).

Proof. Suppose $R_c(\alpha)$ is finite. From Lemma 5, $\text{card} \ \beta(\alpha, r) \leq \aleph_0$. The sequence of equalities $\cdots 100 \cdots = 0110 \cdots = 010110 \cdots$ gives at least \aleph_0 of the $R(\alpha)$. The terminal $100 \cdots$ can be replaced in each case by $010101 \cdots$ to give \aleph_0 of the $R(\alpha)$ which are nonterminating. Hence $\text{card} \ \beta(\alpha, r) = \aleph_0$.

Suppose $R_c(\alpha)$ is infinite. In $R_c(\alpha)$ are found an ∞ of triplets of the form "100." Each triplet can, independently of the others, be replaced by "011." This gives c of the $R(\alpha)$. This completes the proof.

Lemma 6 and the observation about the number of nonterminating $R(\alpha)$ in case $R_c(\alpha)$ is finite give Theorem 1.

We note that

$$\text{card} \ \beta(\alpha, r) = \text{card} \ T_r(\beta(\alpha, r)) = \text{card} \ (I_{a,r} \cap C^2)$$

since (1) T_r is 1-1, (2) from Lemma 3 if $P \subseteq I_{a,r} \cap C^2$ then there exists $x \in \beta(\alpha, r)$ such that $T_r(x) = P$, and (3) $T_r(\beta(\alpha, r)) \subseteq I_{a,r} \cap C^2$.

Remark. If $\alpha \in H$, then any $R(\alpha)$ terminates in either 0's, 1's, or "01" pairs. We do not give the proof.

4. $1/2 < r < \delta$.

Theorem 2. If $1/2 < r < \delta$, there exists at least a countably infinite set of values of α for which $\beta(\alpha, r)$ is a single point.

Proof. Let

$$\alpha = \sum_{j=1}^{\infty} r^{2j} = 0101010 \cdots$$

Suppose another representation of α (in terms of the given r and a 0, 1
sequence) is desired. Suppose \(c_{2k} = 1 \) in (1) is changed to 0 and that this is the first change. But \(\sum_{j=k}^{n} r^{2j+1} = (r^{2k+1})/(1-r^2) = (r/(1-r^2))r^{2k} \) \(< r^{2k} \), since for \(0 < r < \delta, 1-r^2 > r \). Hence, the first change cannot be a 1 to a 0.

Now suppose \(c_{2k+1} = 0 \) in (1) is changed to 1 and that this is the first change. But \(\sum_{j=k+1}^{n} r^{2j} = (r^{2k+2})/(1-r^2) = (r/(1-r^2))r^{2k+1} \). Hence the first change cannot be a 0 to a 1. Therefore, \(\alpha \) has a unique representation.

The set \(A \) of values of \(\alpha \) of the form \(\alpha_p = \sum_{j=p}^{n} r^{2j} \) (\(p = 1, 2, \ldots \)) and \(\alpha'_p = \sum_{j=p}^{n} r^j + \sum_{j=p}^{n} r^{2j} \) (\(p = 1, 2, \ldots \)) will also have a unique representation. This completes the proof.

Let \(r_n \) be the positive root of the equation \(1 = 2^{n-1} r^2 \).

Theorem 3. For \(n > 2 \) there exist sets of numbers \(A_i \) (\(i = 1, 2, 3 \)) with card \(A_i = \aleph_0 \) such that

(i) if \(\alpha \in A_1 \), card \(\beta(\alpha, r_n) = 1 \),

(ii) if \(\alpha \in A_2 \), card \(\beta(\alpha, r_n) = \aleph_0 \),

(iii) if \(\alpha \in A_3 \), card \(\beta(\alpha, r_n) = \aleph_0 \) and the Hausdorff dimension of \(\beta(\alpha, r_n) \leq 1/(n+1) \).

Proof. The set \(A_1 \) is the set \(A \) constructed in the proof of Theorem 2. Let

\[
A_2 = \left\{ \sum_{i=m}^{\infty} r_i \right\} \quad (m = 1, 2, \ldots)
\]

and

\[
A_3 = \left\{ \sum_{i=1}^{m} r_i + \sum_{i=1}^{\infty} r_n^{m+i(n+1)} \right\} \quad (m = 1, 2, \ldots). \]

Suppose \(\alpha \in A_3 \). Each of the \(\infty \) of \((n+1) \)-tuples 1 00 ... 0 \([n \) zeros] in the canonical representation of \(\alpha \) can be replaced independently by the \((n+1) \)-tuple 0 11 ... 1 \([n \) ones] to give \(c \) representations of \(\alpha \). The statement about Hausdorff dimension follows from Lemma 2 of [2].

Suppose \(\alpha \in A_2 \). The sequence of equalities

\[
\begin{align*}
\begin{bmatrix}
0 & \cdots & 0 \\
\end{bmatrix}
\begin{bmatrix}
111 & \cdots \\
\end{bmatrix}
\begin{bmatrix}
m - 1 \\
\end{bmatrix}
&= \begin{bmatrix}
0 & \cdots & 0 \\
\end{bmatrix}
\begin{bmatrix}
1 & \cdots & 0 \\
\end{bmatrix}
\begin{bmatrix}
m - 2 \\
\end{bmatrix}
\begin{bmatrix}
n \\
\end{bmatrix} \\
&= \begin{bmatrix}
0 & \cdots & 0 \\
\end{bmatrix}
\begin{bmatrix}
1 & \cdots & 0 \\
\end{bmatrix}
\begin{bmatrix}
m - 2 \\
\end{bmatrix}
\begin{bmatrix}
n - 1 \\
\end{bmatrix} \\
&= \cdots
\end{align*}
\]
yields \aleph_0 representations of α. Now represent $\alpha \in A_2$ as

$$m - 2 \ | \ n - 1 \ | \ n - 1$$

Another representation of α can be obtained only by changing a digit in (2). Suppose the first digit changed is ϵ_i and $\epsilon_i = 1$. Then all the 0's to the right of ϵ_i must be changed to 1. Suppose $\epsilon_i = 0$. There are not enough 1's to the right to change to 0 to compensate for this gain. Hence α has only \aleph_0 representations.

Remark. Theorems 1, 2, and 3 discuss the cardinality of the points of intersection of the lines $l_{a,r} : rx_1 + r^2x_2 = (1 - r^2)\alpha$ with the plane set $C_\delta (1/2 < r \leq \delta)$. Theorem 2 states that if the set C_δ is "thin" enough, some of these lines intersect C_δ in one point only. Theorem 1 states that for $r = \delta$, the set C_δ is sufficiently "thick" so that every $l_{a,r}$ intersects C_δ in at least \aleph_0 points. Results in [2] give information about the Hausdorff dimension of $l_{a,r} \cap C_\delta$ for $1 > r > \delta$.

References

Los Alamos Scientific Laboratory, University of California