AN INEQUALITY FOR NONNEGATIVE ENTIRE FUNCTIONS

R. P. BOAS, JR.

I give a simple proof of an inequality equivalent to one that was proved by S. Bernstein [1]. The proof also applies in higher dimensions, where Bernstein's method is not available.

Theorem 1. Let \(f(z) \) be an entire function of exponential type \(\tau \), nonnegative and integrable on the real axis. Then

\[
f(z) \leq (2\pi)^{-1} \int_{-\infty}^{\infty} f(x) \, dx.
\]

There is equality for \(f(z) = z^{-2} \sin^2 \tau z/2 \).

We have (see, e.g., [2, p. 103])

\[
f(z) = \int_{-\tau}^{\tau} \phi(t) e^{itz} \, dt.
\]

A special case of Poisson's summation formula,\(^2\) applied to (2), yields

\[
\tau \phi(0) = \sum_{n=-\infty}^{\infty} f((2n\pi + x)/\tau).
\]

Since the terms on the right are nonnegative, none of them can exceed \(\tau \phi(0) \), which is the right-hand side of (1).

Now let \(f(z, w) \) be an entire function of exponential type, absolutely integrable for real \(z, w \). We then have [5]

\[
f(x, y) = \int_{S} \int \phi(t, u) e^{itz + iu} \, dt \, du,
\]

where \(S \) is a bounded convex set determined by the growth of \(f(z, w) \). Consider lattices \(\{a_{11}m + a_{12}n, a_{12}m + a_{22}n\} \) such that \(S \) is inside a lattice parallelogram that contains \((0, 0) \) and has area \(4(a_{11}a_{22} - a_{12}a_{21}) = 4 \det[a] \); let \(4D \) be the area of the smallest such parallelogram.

Theorem 2. If \(f(x, y) \geq 0 \) then

Received by the editors March 21, 1962.

1 This was written while the author was President's Fellow at Northwestern University.

2 The abstract form of Poisson's formula is given in [4, p. 153]; the special cases used here can be found in [3].
If $[A]$ is the matrix $2\pi[a]^{-1}$ the analogue of (3) is

$$D\phi(0, 0) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(A_{11}m + A_{12}n + x, A_{21}m + A_{22}n + y),$$

and (5) follows in the same way as (1).

REFERENCES

REPRESENTATIONS OF BANACH SPACES

G. S. YOUNG

Banach and Mazur proved that every separable Banach space B can be represented as the space $C(M)$ of continuous real functions on a compact metric space M. Since M is the continuous image of the Cantor set K, $C(M)$ can be imbedded in $C(K)$, and since functions in $C(K)$ can be extended preserving norm to functions over I, they conclude that B can be represented as a subspace of $C(I)$.

If B is not separable, it can be represented as $C(H)$, where H is compact Hausdorff. A compact Hausdorff space is the continuous image of some totally disconnected compact Hausdorff space T—for example, give the space the discrete topology, and let T be its Stone-Čech compactification. It follows that B is isomorphic to a subspace of $C(T)$. If T could be given a linear order inducing the same topology, we could fill in the missing intervals and obtain a compact con-