Since \(\int_0^x |F| < \infty \), the first equation in (4) has a solution, say \(\theta_1 \), such that \(\theta_1 \to 0 \) as \(x \to \infty \). Put \(r_1 = \exp -\int_0^x F \cos^2 (f + \theta) \). Then \(r_1 \) and \(\theta_1 \) constitute a solution of (4). Set \(y_1 = r_1 \sin (f + \theta) \). One can construct \(y_1 \) similarly.

REFERENCES

REMARK ON \(\pi(x) = o(x) \)

S. E. MAMANGAKIS

In Hardy and Wright [1], Landau [2], and Prachar [3] there are proofs of \(\pi(x) = o(x) \). The purpose of this paper is to provide a simpler proof.

THEOREM. \(\pi(x) = o(x) \).

Proof. Let \(M_r \) denote the product of the first \(r \) primes. Given any positive real number \(x \geq 2 \), it is clear that there exist unique positive integers \(k \) and \(r \), with \(1 \leq k \leq p_{r+1} - 1 \), such that

\[
(1) \quad k \cdot M_r \leq x < (k + 1)M_r.
\]

For any \(x \) satisfying (1) we must also have

\[
(2) \quad \pi(x) \leq (k + 1)\phi(M_r) + r
\]

(where \(\phi(M_r) \) is the totient of \(M_r \)). From (1) and (2) we obtain

\[
(3) \quad 0 \leq \frac{\pi(x)}{x} \leq \frac{(k + 1)\phi(M_r)}{kM_r} + \frac{r}{kM_r}.
\]

Since \(kM_r \geq kr! \geq r! \) and \((k + 1)/k \leq 2 \), we replace (3) by

\[
(4) \quad 0 \leq \frac{\pi(x)}{x} \leq 2 \prod_{i=1}^r \left(1 - \frac{1}{p_i} \right) + \frac{1}{(r - 1)!}.
\]
Since there are infinitely many primes (a fact already used implicitly in defining \(k \) and \(r \)), \(r \to \infty \) as \(x \to \infty \). We may therefore write

\[
0 \leq \limsup_{x \to \infty} \frac{\pi(x)}{x} \leq 2 \prod_{i=1}^{\infty} (1 - \frac{1}{p_i}) + \lim_{r \to \infty} \frac{1}{(r-1)!} = 0,
\]

where the divergence of \(\prod_{i=1}^{\infty} (1 - \frac{1}{p_i}) \) to zero follows from the divergence of \(\sum_{i=1}^{\infty} \frac{1}{p_i} \).

References