ON EXPONENTIALLY CLOSED FIELDS

NORMAN L. ALLING

It is well known [4] that the non-Archimedean residue class fields \(K \) of the ring of continuous real valued functions on a space are real-closed and \(\eta \)-sets. It does not appear to be known that the exponential function in the reals induces an exponential function in \(K \) (definitions to follow); thus \(K \) is exponentially closed. The property of being exponentially closed is a new invariant which will be applied to totally ordered fields in this paper.

A totally ordered field \(K \) will be called \textit{exponentially closed} if (i) there exists an order preserving isomorphism \(f \) of the additive group of \(K \) onto \(K^+ \), the multiplicative group of positive elements of \(K \), and (ii) there exists a positive integer \(n \) such that \(1 + 1/n < f(1) < n \); such an isomorphism will be called an \textit{exponential function} in \(K \).

In §0 Archimedean exponentially closed fields will be considered, the rest of the paper being devoted to the non-Archimedean case. In §1 some necessary conditions for a non-Archimedean field to be exponentially closed will be given, followed in §2 by some examples. In §3 a set of sufficient conditions will be given, followed by an example.

A totally ordered field \(K \) will be called \textit{root-closed} if \(K^+ \) is divisible. Clearly exponentially closed fields and real-closed fields are root-closed.

0. An Archimedean totally ordered field is isomorphic to a unique subfield of the reals. Let \(K \) be an exponentially closed subfield of the reals and let \(f \) be an exponential function in \(K \). If \(a = f(1) \) then \(f(x) = a^x \) for all \(x \in K \). Conversely, if \(a \in K \), \(a > 1 \), and if \(g(x) \) is defined to be \(a^x \) for all \(x \in K \), then \(g \) is an exponential function in \(K \). Thus, any subfield of the reals is contained in a unique exponentially closed subfield of the reals, both having the same cardinality. The field of real algebraic numbers is, by definition, real-closed. However \(2^{1/\alpha} \) is not in it, hence it is not exponentially closed. It is not known to the author if exponentially closed fields need be real-closed.

1. \textbf{Necessary conditions.} Let \(K \) be a non-Archimedean field. It is well known [3] that one can associate with \(K \) a totally ordered group

\[\text{(Presented to the Society, April 14, 1961; received by the editors April 17, 1961 and, in revised form, July 28, 1961.1} \]
G and a homomorphism \(V \) of the multiplicative group of \(K \) onto \(G \) satisfying the following conditions: (1) \(V \) is order preserving on \(K^+ \), (2) \(V(a \pm b) \leq \max(V(a), V(b)) \) (\(V(0) \) being the symbol \(-\infty\) treated in the usual way), and (3) \(V(a) = V(b) \) if and only if there exists a positive integer \(n \) such that \(|a| \leq n|b| \) and \(|b| \leq n|a| \). The mapping \(V \) will be called a natural valuation on \(K \); clearly any two such mappings are essentially identical. The valuation ring of \(V \) is \(\mathcal{O} = \{ a \in K : V(a) \leq 0 \} \) and its maximal ideal \(P = \{ a \in K : V(a) < 0 \} \). Clearly the residue class field of \(K \), \(O/P = k \), is an Archimedean field.

Assume, in addition, that \(K \) is exponentially closed and that \(f \) is an exponential function in \(K \).

Lemma 1.1. The restriction of \(f \) to \(O \) maps \(O \) onto the group of positive units of \(O \). Further, \(a \in P \) if and only if \(f(a) - 1 \in P \).

Proof. Since \(f(1) < n \), \(f \) maps \(O \) into the positive units of \(O \). Let \(a \) be a positive unit of \(O \). There exists \(m \in \mathbb{N} \), the set of positive integers, such that \(1/m < a < m \). Let \(b = f^{-1}(a) \). It suffices to show that \(b \in O \). There exists \(i \in \mathbb{N} \) such that \((1+1/n)^i > m \). Thus \(f(i) = f(1)^i > (1+1/n)^i > m > f(b) \), and \(i > b \). Since \(1+1/n < f(1) \), \(f(-1) < n/(n+1) \). Since \(n/(n+1) < 1 \), there exists \(t \in \mathbb{N} \) such that \((n/(n+1))^t < 1/m \). Thus \(f(-t) = f(-1)^t < (n/(n+1))^t < 1/n < f(b) \) and \(-t < b \), proving that \(b \in O \) and hence the first assertion is proved.

Let \(h \) be the canonical homomorphism of \(O \) onto \(k \). Clearly \(r = hf \) is an order preserving homomorphism of \(O \) onto the multiplicative group of positive units of \(k \). Clearly \(a \in P \) if and only if \(-1 < ma < 1 \) for all integers \(m \). By condition (ii), \(1+1/n \leq r(1) \leq n \) and \(1/n \leq r(-1) \leq n/(n+1) \). Hence \(a \) is in \(P \) if and only if \(1/n \leq (r(a))^m \leq n \) for all integers \(m \): i.e., \(r(1) = 1 \) or equivalently \(f(a) - 1 \in P \), proving the lemma.

The following theorem is an immediate consequence of this lemma.

Theorem 1.2. The residue class field of a non-Archimedean exponentially closed field is an Archimedean exponentially closed field.

The restriction of \(V \) to \(K^+ \) is an order preserving homomorphism onto \(G \) whose kernel is the group of positive units of \(O \); thus \(Vf \) is an order preserving homomorphism of the additive group of \(K \) onto \(G \) whose kernel is \(O \), proving the following theorem.

Theorem 1.3. If \(K \) is a non-Archimedean exponentially closed field whose valuation ring is \(O \) and whose value group is \(G \) then there exists an order preserving group isomorphism that sends \(K/O \) onto \(G \).

It is well known [3] that given a totally ordered Abelian group \(G \)
there exists a mapping \(W \) of \(G \) onto a totally ordered set that has all the properties of \(V \), except that of being a homomorphism. Such a mapping, characterized by these properties, will be called a natural valuation on \(G \). Let \(G^+ \) be the set of positive elements of \(G \). Then \(S = W(G^+) \) will be called the value set of \(G \). For \(s \in S \) let \(G_s = \{ g \in G : W(g) \leq s \} / \{ g \in G : W(g) < s \} \). Clearly \(G_s \), which will be referred to as the factor of \(G \) associated with \(s \), is an Archimedean group.

Corollary 1.4. Assume that \(K \) is a non-Archimedean exponentially closed field. Let \(G \) be the value group of \(K \) and \(k \) the residue class field of \(K \). Then \(G^+ \) is isomorphic as an ordered set to \(W(G^+) \) and the factors of \(G \) are isomorphic to \(k \).

Proof. By Theorem 1.3, \(K/O \) and \(G \) are isomorphic; thus they have isomorphic value sets. The value set of \(K/O \) under the natural valuation induced by \(V \) is \(G^+ \), proving the first assertion. Let \(g \in G^+ \). The factor of \(K/O \) associated with \(g \) is isomorphic to the factor \(K_o \) of \(K \) associated with \(g \). Let \(a \in K \) such that \(V(a) = g \). Then \(K_o = Oa/Pa \), which is isomorphic to \(O/P = k \), proving the corollary.

2. **Examples.** Under pointwise operations, the set \(C(X) \) of all continuous functions from a completely regular Hausdorff space into the reals is a lattice-ordered ring. If \(a \in C(X) \) then \(e^a \in C(X) \); further, \(a \) and \(e^a - 1 \) have the same zeros and hence [4] belong to the same maximal ideals. Let \(K \) be a non-Archimedean residue class field of \(C(X) \) [4] and let \(h \) be the associated canonical homomorphism. For \(a' \in K \) let \(a \in h^{-1}(a') \), and let \(f(a') = h(e^a) \). Since \(a' = 0 \) if and only if \(h(e^a - 1) = 0 \), \(f \) is a well defined isomorphism of \(K \) into \(K^+ \). Since \(h \) and \(a \rightarrow e^a \) are order preserving, so then is \(f \). For \(a' \geq 1 \) we may choose \(a \geq 1 \). Let \(b = \log a \) and let \(b' = h(b) \). Clearly \(f(b') = a' \). For \(0 < a' < 1 \) we may apply the argument above to \(1/a' \); thus \(K \) is exponentially closed.\(^2\)

It is well known [4] that such fields are real-closed, have the reals as their residue class field and are \(\eta \)-sets in the sense of the following definition. Let \(\alpha \) be an ordinal number and let \(T \) be a totally ordered set. \(T \) is called an \(\eta_{\alpha} \)-set if, given subsets \(A \) and \(B \) of \(T \) of power less than \(\aleph_\alpha \) such that \(A < B \), then there exists \(t \in T \) such that \(A < \{ t \} < B \).

It has been shown [2] that if \(\alpha > 0 \), \(\aleph_\alpha \) is a regular cardinal number, and \(\sum_{\alpha < \alpha} 2^{\aleph_\alpha} \leq \aleph_\alpha \), then a real-closed field exists that is an \(\eta_{\alpha} \)-set of power \(\aleph_\alpha \). Let \(K \) be such a field. Clearly \(K \) is non-Archimedean. Let \(f_\alpha(n) = 2^n \) for all integers \(n \). Both the additive group of \(K \) and the

\(^2\) According to Henriksen, this argument can be used to show that the residue class fields of uniformly closed phi-algebras are exponentially closed.
multiplicative group of positive elements of K are totally ordered
Abelian divisible groups that are η_{α}-sets of power \mathbb{N}_1. Thus by Theo-
rem B [1] f_0 extends to an exponential function in K, proving that
K is exponentially closed.

Let k be an Archimedean field and let T be a nonempty totally
ordered set. For $a \in k^T$ let $s(a) = \{ t \in T : a(t) \neq 0 \}$. A subset of T is
called anti-wellordered if every nonempty subset of it has a greatest
element. Let $k\{ T \}$ be defined to be $\{ a \in k^T : s(a) \text{ is anti-wellordered} \}$. Clearly $k\{ T \}$ is an Abelian group under pointwise addition. For
$a \in k\{ T \}, a \neq 0$, let $d(a)$ be the greatest element in $s(a)$. Define $a > 0$
if $a(d(a)) > 0$; then $k\{ T \}$ is a totally ordered group, d is a natural
valuation and T is its value set.

For an ordinal number α let $k\{ T \}_\alpha = \{ a \in k\{ T \} : \text{the cardinal num-
ber of } s(a) \text{ is less than } \aleph_{\alpha} \}$. Clearly $k\{ T \}_\alpha$ is a subgroup of $k\{ T \}$. Let G be a nonzero totally ordered Abelian group. For $a, b \in k\{ G \}$ let $(ab)(g) = \sum_{x \in G} a(x)b(g-x)$. It is well known [5] that, under this
multiplication, $k\{ G \}$ is a totally ordered field. Let α be a nonzero
ordinal number; then $k\{ G \}_\alpha$ is a subfield of $k\{ G \}$. Further, d re-
stricted to $k\{ G \}_\alpha$ is a natural valuation of $k\{ G \}_\alpha$, its value group
being G and its residue class field K.

Let G be a totally ordered Abelian divisible group that is an η_α-set
of power \mathbb{N}_1 and let $K = R\{ G \}$. It was shown in [2] that K is a real-
closed field that is an η_α-set and has as its residue class field the reals;
thus K might be conjectured to be isomorphic to a residue class field
of $C(X)$ for some X. However K/O is isomorphic to $R\{ G^+ \}$ which is
of power $2^{\mathbb{N}_1}$, whereas G is of power \aleph_α; thus, by Theorem 1.3, K is
not exponentially closed and hence not isomorphic to any residue class
field of $C(X)$ for any space X.

3. Sufficient conditions. Let k be an Archimedean field, α a non-
zero ordinal, G a nonzero totally ordered Abelian group, and let
$K = k\{ G \}_\alpha$. The valuation ideal of K is $k\{ G^- \}$, G^- being the set of
all negative elements of G. It has been shown [5] that given a nonzero
element q of P then the semigroup $\omega_\alpha(q) = \bigcup_{n \in \mathbb{N}} ns(q)$ of G is anti-
wellder, and further given g in it there exists $m \in \mathbb{N}$ such that
g $\in \bigcup_{n \in \mathbb{N}} ns(q)$. Thus given a sequence $(a_n)_{n \in \mathbb{N}}$ in k, $r = \sum_{n=1}^{\infty} a_nq^n$ is a
well defined element of P. Further, given $b \in K$, $rb = \sum_{n=1}^{\infty} a_nb^n$.

For $q \in P$ let $\exp q = \sum_{n=0}^{\infty} q^n/n!$ and let $\log 1 + q = \sum_{n=1}^{\infty} (-1)^{n-1}q^n/n$. By direct calculation it is seen that for all
$q \in P, r \in P$, $\exp q \exp r = \exp q + r$. From analysis we know that
$\sum_{n=1}^{\infty} (-1)^{n-1}(\sum_{m=1}^{n} x^m/m!) n/n$ converges for all real x such that
$|x| < \log 2$; and further that the sum of this series, since it is the ex-
pansion of \(\log e^x \), is \(x \). Hence the coefficients of this series are the same as the coefficients of the power series \(x \). Thus \(\log \exp q = q \) for all \(q \in P \), proving that \(\exp \) maps \(P \) onto \(1+P \) and is one-to-one.

Let \(K \) be a non-Archimedean field with value group \(G \) and residue class field \(k \). We will say that \(K \) is properly imbedded in \(k \{ G \} \) if it is imbedded in \(k \{ G \} \) such that given \(a \in K \), \(V(a) = \delta(a) \), and such that \(k \{ G \} \subset K \). Generalizing somewhat a well known result stated by Conrad [3, p. 328] we get the following: if \(K \) is real-closed it can be properly imbedded in \(k \{ G \} \).

Theorem 3.1. A non-Archimedean field \(K \) with valuation ring \(O \), valuation ideal \(P \), value group \(G \) and residue class field \(k \) is exponentially closed if the following hold: (0) \(K \) is root-closed, (1) \(K \) is exponentially closed, (2) \(K/O \) is order isomorphic to \(G \), and (3) \(K \) may be properly imbedded in \(k \{ G \} \) in such a way that if \(q \in P \) then \(\exp q \) and \(\log 1+q \) \(\in K \).

Proof. Let \(K \) be imbedded in \(k \{ G \} \) such that condition (3) holds; thus \(\exp \) is an order preserving isomorphism of \(P \) onto the multiplicative group of \(1+P \). Let \(k = k1 \). Clearly the ring \(O \) is the direct sum of \(k \) and \(P \), the order on the sum being lexicographic. By condition (1), \(k \) is exponentially closed; thus given \(a \in k \), \(a > 1 \), the mapping \(x \rightarrow a^x \) is an exponential in \(k \). For \(y \in O \) let \(y = x + q \), \(x \in k \) and \(q \in P \), this decomposition being unique. Let \(f_a(y) = a^y \exp q \). Clearly \(f_a \) is an order preserving isomorphism of \(O \) onto the group of positive units of \(O \). The additive group of \(K \) is the direct sum of \(K/O \) and \(O \), the order in the sum being lexicographic. An element \(u \) in \(K \) can be expressed uniquely as \(z+y \), \(z \in K/O \) and \(y \in O \). By condition (2) there exists an order preserving isomorphism \(t \) of \(K/O \) onto \(G \). Let \(f(u) = (t(z), f_0(y)) \). The valuation \(V \), restricted to \(K^+ \), is an order preserving homomorphism of the multiplicative group of \(K^+ \) (which is divisible by condition (0)) onto \(G \) whose kernel is the group of positive units of \(O \). Thus the totally ordered group \(K^+ \) is the direct product of \(G \) and the group of multiplicative units of \(O \), the order being lexicographic. Hence \(f \) becomes an exponential function of \(K \), proving that \(K \) is exponentially closed, proving the theorem.

Note. Conditions (0), (1) and (2) are necessary for \(K \) to be exponentially closed.

Let \(E \) be an \(\eta \)-set of power \(\aleph_1 \) and let \((x_n)_{n \in N} \) be a strictly increasing sequence in \(E \). Let \(E_n = \{ x \in E : x < x_n \} \). Then \(E_n \) is an \(\eta \)-set of power \(\aleph_1 \). Let \(E' = \bigcup_{n \in N} E_n \). Since \(E' \) has a countable cofinal sequence it is not an \(\eta \)-set. Let \(G = R \{ E' \} \) and let \(G_n = R \{ E_n \} \). Then \(G_n \) is an Abelian divisible group that is an \(\eta \)-set of power \(\aleph_1 \) [2]. Further,
$G = \bigcup_{n \in \mathbb{N}} G_n$; thus G^+ is order isomorphic to E' which, under the natural valuation d, is the value set of G (cf. Corollary 1.4).

$K = R \{G\}_1$ is a real-closed field (hence a root-closed field) that has the reals as its residue class field; thus K satisfies conditions (0) and (1). K/O is isomorphic to $R \{G^+\}_1$ which, since G^+ is isomorphic to E', is isomorphic to $R \{E'\}_1$: i.e., to G; thus K satisfies condition (2). Clearly condition (3) holds. Thus, by Theorem 3.1, K is exponentially closed. However, since K has a countable cofinal sequence it is not an η_1-set.

Bibliography