COMPLETE SETS OF REPRESENTATIONS OF ALGEBRAS

ROBERT STEINBERG

1. Introduction and results. A classical theorem [1, Chapter XV, Theorem IV] states:

(1) Let G be a finite group and R a faithful representation\(^1\) of G over a field K. Then each irreducible representation of G over K is a constituent of some tensor power of R.

The only proof of this result known to us actually requires the additional assumption that K is of characteristic 0 and involves a calculation with characters which is not very revealing (to us). In an attempt to construct a more conceptual proof we have been led to a considerably more general result.

(2) Let A be an algebra over a field K. Assume that A has a basis B over K such that $B \cup \{0\}$ is closed under multiplication. Finally, let R be a representation of A which is faithful on $B \cup \{0\}$, and for each $r = 1, 2, \ldots$ let $\otimes^r R$ be the representation of A defined by $(\otimes^r R)(b) = \otimes^r R(b)$ ($b \in B$) together with linearity. Then the representations $\otimes^r R$ ($r = 1, 2, \ldots$) form a complete set of representations of A (in the sense that their direct sum is faithful on A).

Observe that the assumptions on B imply that each $\otimes^r R$ really is a representation of A and that A is associative, but that there is no restriction on the characteristic of K or the dimension of A or R. The transition from (2) to (1) is immediately effected by applying to the group algebra of G the statement (2) and the following probably well-known result, for which a proof is sketched at the end of this paper.

(3) If $\{\tau R \mid r = 1, 2, \ldots\}$ is a complete set of representations of a finite-dimensional algebra A, then each irreducible representation of A is a constituent of some τR.

That the finiteness assumptions cannot be dropped in (1) or (3) may be seen from the following example. Let $e(k)$ be the real 2×2 matrix obtained by replacing the 12 entry of the identity matrix by k, G the multiplicative group of all $e(k)$, A the group algebra of G over the reals, B the set G (imbedded in A), and R the defining representation of G extended to A. Then no tensor power of R contains the one-dimensional representation S of A (or G) defined by $S(e(k)) = \exp k$ (k real).

The proof of (2) depends on the following lemma.

\(^1\)Throughout this note all representations are assumed to correspond to left modules and the 0-representation is excluded from the list of irreducible representations.
(4) If \(C \) is a set of nonzero elements of a vector space \(V \), then in the strong direct sum \(\sum_{r=1}^{\infty} \otimes^r V \) the vectors \(\sum \otimes^r c \ (c \in C) \) are linearly independent.

2. Proofs. If the conclusion of (4) does not hold, there is a minimal nonempty finite subset \(D \) of \(C \) such that there are nonzero scalars \(k(d)(d \in D) \) for which

\[
\sum_{d \in D} k(d) \otimes^r d = 0 \quad (r = 1, 2, \ldots).
\]

Since \(D \) clearly has at least two elements, there is a linear function \(v^* \) on \(V \) which is not constant on \(D \). Replacing \(r \) by \(r+s \) in (*) , taking the tensor product with \(\otimes^s v^* \), and then contracting, we get

\[
\sum_{d \in D} (k(d) \otimes^r d)v^*(d)^s = 0 \quad (r = 1, 2, \ldots ; \ s = 0, 1, 2, \ldots).
\]

Thus if \(k_1, k_2, \ldots, k_n \) are the distinct values taken by \(v^* \) on \(D \), the value \(k_1 \) being taken on the subset \(D_1 \) of \(D \), then because the van der Monde matrix \((k_i^s) \ (1 \leq i \leq n, 0 \leq s \leq n-1) \) is nonsingular, the equations (*) hold with \(D \) replaced by \(D_1 \), contradicting the minimal nature of \(D \). Thus (4) is established.

Under the assumptions of (2) let \(a = \sum k(b)b \ (b \in B, k(b) \in K) \) be an element of \(A \) such that \((\otimes^r R)(a) = 0 \) for \(r = 1, 2, \ldots \). Then

\[
\sum k(b) \otimes^r R(b) = 0 \quad \text{for} \ r = 1, 2, \ldots, \text{each} \ k(b) \text{is 0 by (4), whence} \ a \text{is also 0. Thus (2) is proved.}
\]

For the proof of (3) one may assume that \(\{^r R\} \) is finite and consists of finite-dimensional representations. Let \(^r M = ^r M_0 \supseteq ^r M_1 \supseteq \ldots \) be a composition series for the \(A \)-module \(^r M \) corresponding to \(^r R \), and let \(N \) be an arbitrary irreducible \(A \)-module. If \(A^0 \) is the radical of \(A \), then \(A/A^0 \) is a sum of minimal left ideals. Hence there is a minimal left ideal \(I/A^0 \) such that \(IN \neq 0 \), and then there is a corresponding pair \((r, i) \) such that \(I(^r M_i/^r M_{i+1}) \neq 0 \), since otherwise \(I \) would be nilpotent because \(\{^r R\} \) is complete and thus would be contained in \(A^0 \). If \(m \) and \(n \) are nonzero elements of \(^r M_i/^r M_{i+1} \) and \(N \) respectively, it is then readily verified that the map \(im \rightarrow in \ (i \in I) \) is an \(A \)-module isomorphism of \(^r M_i/^r M_{i+1} \) on \(N \). Hence (3).

Reference

University of California, Los Angeles and
The Institute for Advanced Study