Unknotting 3-spheres in six dimensions
HTML articles powered by AMS MathViewer
- by E. C. Zeeman
- Proc. Amer. Math. Soc. 13 (1962), 753-757
- DOI: https://doi.org/10.1090/S0002-9939-1962-0143200-7
- PDF | Request permission
References
- James W. Alexander, The combinatorial theory of complexes, Ann. of Math. (2) 31 (1930), no. 2, 292–320. MR 1502943, DOI 10.2307/1968099
- André Haefliger, Knotted $(4k-1)$-spheres in $6k$-space, Ann. of Math. (2) 75 (1962), 452–466. MR 145539, DOI 10.2307/1970208 M. H. A. Newman, On the superposition of n-dimensional manifolds, J. London Math. Soc. 2 (1927), 56-64. J. H. C. Whitehead, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc. 45 (1939), 243-327.
- E. C. Zeeman, Unknotting spheres in five dimensions, Bull. Amer. Math. Soc. 66 (1960), 198. MR 117737, DOI 10.1090/S0002-9904-1960-10431-4
- E. C. Zeeman, Unknotting spheres in five dimensions, Bull. Amer. Math. Soc. 66 (1960), 198. MR 117737, DOI 10.1090/S0002-9904-1960-10431-4 —, Unknotting combinatorial balls, (to appear). —, Isotopies of manifolds, (to appear).
Bibliographic Information
- © Copyright 1962 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 13 (1962), 753-757
- MSC: Primary 55.20
- DOI: https://doi.org/10.1090/S0002-9939-1962-0143200-7
- MathSciNet review: 0143200