ON f-RINGS WITH THE ASCENDING CHAIN CONDITION1

F. W. ANDERSON

Introduction. In [1] Birkhoff and Pierce obtain the structure of f-rings2 which have no nonzero nilpotent elements and satisfy the descending chain condition for l-ideals. More recently, D. G. Johnson [4] gives the structure of J-semi-simple f-rings (§2) with the descending chain condition for l-ideals. In this note our principal aim is to give the structure of f-rings with various ascending chain conditions. We first show (Theorem 1) that in f-rings the ascending and descending chain conditions for closed l-ideals are equivalent and that an f-ring with these conditions can be characterized as a subdirect sum of finitely many totally ordered rings. Next (Theorem 2) we specialize to the case of f-rings with no nonzero nilpotent elements. In §2 we consider J-semi-simple f-rings. For these f-rings we show (Theorem 4) that the ascending and descending chain conditions for l-ideals and for closed l-ideals are all equivalent.

In [3] Goldie proves that a semi-simple ring with the ascending chain condition for ideals is a subdirect sum of a finite number of semi-simple prime rings. An examination of the proof of this result shows that he proves even more, namely, that a semi-prime ring with the ascending chain condition for annihilator ideals is a subdirect sum of a finite number of prime rings. The results of this note provide f-ring analogues of the results of [3], and the techniques we employ are patterned after those of Goldie.

1. Chain conditions for closed l-ideals. Let A be an f-ring. By an l-ideal of A we mean a ring ideal I such that for all a, bEA if bEI and |a| ≤ |b|, then a∈I. If S is a nonempty subset of A, then we set

\[S^l = \{ a \in A ; \ a \wedge x = 0 \ (x \in S) \} . \]

It is clear that: (i) \(S^l \) is an l-ideal of A; (ii) \(S \cap S^l = \{ 0 \} \); (iii) \(S \subseteq S^{l-1} \); and (iv) \(S^\perp \) is contained in both the left and right (ring) annihilators of S. We say that S is complemented in case \(S^l \not= \{ 0 \} \) and closed in case \(S = S^{l-1} \).

1 This work was supported by a grant from the National Science Foundation.
2 An f-ring is a lattice-ordered ring in which \(a \wedge b = 0 \) and \(c \geq 0 \) imply \(a \wedge b = ac \wedge b = 0 \). In [1] Birkhoff and Pierce, who introduced the concept, prove that f-rings are characterizable as subdirect sums of totally ordered rings. For the general theory of lattice-ordered rings and of f-rings see Birkhoff and Pierce [1], Johnson [4], and Pierce [5].

715
Lemma 1. If I is a nonzero l-ideal of an f-ring A, then the following statements are equivalent:

1. I is totally ordered (as a sub f-ring of A);
2. I^\perp is a maximal closed l-ideal;
3. A/I^\perp is totally ordered.

Proof. (1) \Rightarrow (3). Assume that I is totally ordered. Then if $a, b \in I^\perp$ are positive, there exists an element $c \in I$ such that $a \wedge c > 0$ and $b \wedge c > 0$. Since I is totally ordered and an l-ideal of A, $(a \wedge b) \wedge c > 0$. Thus $a \wedge b \in I^\perp$, and so, A/I^\perp is totally ordered.

(3) \Rightarrow (2). Assume A/I^\perp is totally ordered. To see that I^\perp is a maximal closed l-ideal, it will suffice to show that if $a \in I^\perp$, then $\{a\} \cup I^\perp = \{0\}$ since the closed l-ideal generated by $\{a\} \cup I^\perp$ is

$$(\{a\} \cup I^\perp)^\perp = (\{a\} \cap I^\perp)^\perp.$$

But if $x \in \{a\} \cap I^\perp$, then A/I^\perp is totally ordered, since $|x| \wedge |a| = 0$, and since $a \in I^\perp$, we have $x \in I^\perp$. Therefore $\{a\} \cap I^\perp \subseteq I^\perp \cap I^\perp = \{0\}$.

(2) \Rightarrow (1). If I is not totally ordered, then I^\perp is not totally ordered. So there exist nonzero elements $a, b \in I^\perp$ such that $a \wedge b = 0$. If J is the l-ideal generated by $I^\perp \cup \{a\}$, then $b \in J^\perp$. Thus J^\perp is a proper closed l-ideal properly containing I^\perp; hence, I^\perp is not a maximal closed l-ideal.

Lemma 2. If M and N are maximal closed l-ideals of an f-ring A, then $M \neq N$ if and only if $N^\perp \neq M$.

Proof. By Lemma 1, N^\perp is totally ordered. Since M is closed, it is clear then that either $N^\perp \subseteq M$ or $N^\perp \supseteq M$. So if $N^\perp \not\subseteq M$, then $M \subseteq N$ and, by the maximality of M, $M = N$. Conversely, if $M = N$, then $N^\perp = M^\perp \subseteq M$ since $M^\perp \neq \{0\}$.

In general, an f-ring need not have any maximal closed l-ideals. An example of such an f-ring is the f-ring of all continuous real-valued functions on $[0, 1]$. Also, a maximal closed l-ideal need not be a maximal l-ideal. For example, let $Q[x]$ be the ring of polynomials in one indeterminate over the rational field ordered lexicographically $(1 > \lambda > \lambda^2 > \cdots)$. Then $\{0\}$ is a maximal closed l-ideal but not a maximal l-ideal.

Lemma 3. If A is an f-ring satisfying the ascending chain condition for closed l-ideals, then every complemented l-ideal of A is contained in a maximal closed l-ideal.

2 See Johnson [4, p. 172].
PROOF. If \(I \) is a complemented \(-\)ideal, then \(I^\perp \) is a proper closed \(-\)ideal containing \(I \).

Lemma 4. If \(A \) is an \(f \)-ring satisfying the ascending chain condition for closed \(-\)ideals, then the set \(\mathfrak{M} \) of maximal closed \(-\)ideals of \(A \) is finite and \(\bigcap \mathfrak{M} = \{0\} \).

Proof. By Lemma 3, \(\mathfrak{M} \neq \emptyset \). We show first that \(\bigcap \mathfrak{M} = \{0\} \). For if \(\bigcap \mathfrak{M} \neq \{0\} \), then \((\bigcap \mathfrak{M})^\perp \) is complemented. Thus, by Lemma 3, there is an \(M \in \mathfrak{M} \) with \((\bigcap \mathfrak{M})^\perp \subseteq M \). Since this implies \(M^\perp \subseteq M \), we have the contradiction \(M^\perp = \{0\} \); hence \(\bigcap \mathfrak{M} = \{0\} \).

Now using the ascending chain condition for closed \(-\)ideals, we see that there exist \(M_1, \ldots, M_n \in \mathfrak{M} \) such that

\[
M^\perp \subseteq (M_1 \cap \cdots \cap M_n)^\perp \quad (M \in \mathfrak{M}).
\]

Thus, \(M_1 \cap \cdots \cap M_n = \{0\} \). If \(M \in \mathfrak{M} \) and \(M \not\in M_i \) (\(i = 1, \ldots, n \)), then, by Lemma 2, \(M^\perp \subseteq M_1 \cap \cdots \cap M_n \) contrary to \(M^\perp \neq \{0\} \). Therefore, \(\mathfrak{M} = \{M_1, \ldots, M_n\} \).

Theorem 1. For an \(f \)-ring \(A \) the following statements are equivalent:

1. \(A \) has the ascending chain condition for closed \(-\)ideals.
2. \(A \) has the descending chain condition for closed \(-\)ideals.
3. \(A \) is isomorphic to a subdirect sum of a finite number of totally ordered rings.

Proof. The equivalence of (1) and (2) is clear since the mapping \(I \rightarrow I^\perp \) is a dual automorphism of the lattice of closed \(-\)ideals of \(A \).

The implication \((3) \Rightarrow (1) \) is trivial. Finally, the implication \((1) \Rightarrow (3) \) follows immediately from Lemmas 1 and 4.

If \(A \) is an \(f \)-ring, then the set \(N(A) \) of all nilpotent elements of \(A \) is an \(-\)ideal called the \(-\)radical of \(A \) [1]. Clearly, \(N(A/N(A)) = \{0\} \) and \(N(I) = N(A) \cap I \) for any \(-\)ideal \(I \) of \(A \). The \(-\)radical \(N(A) \) of \(A \) can also be characterized [5] as the intersection of all prime \(-\)ideals of \(A \). Recall [4] that in an \(f \)-ring \(A \) an \(-\)ideal \(P \) is prime if and only if for all \(a, b \in A \), \(ab \in P \) implies \(a \in P \) or \(b \in P \). This is also equivalent to the property: \(A/P \) is totally ordered with no nonzero divisors of zero.

If \(A \) is an \(f \)-ring with \(N(A) = \{0\} \), then it follows that if \(S \subseteq A \) is nonvoid, its left annihilator, right annihilator, and \(S^\perp \) coincide [1, p. 63].

Lemma 5. Let \(A \) be an \(f \)-ring with \(N(A) = \{0\} \) and let \(P \) be an \(-\)ideal of \(A \). Then \(P \) is a complemented prime \(-\)ideal if and only if \(P \) is a maximal closed \(-\)ideal.
Proof. If P is a complemented prime l-ideal, then $P^\bot \neq 0$, whence $P^\bot \subseteq P$. Since $P^\bot P^\bot = \{0\}$, we have that $P^\bot \subseteq P$, so that P is closed. Also, since P is prime, A/P is totally ordered. Therefore, by Lemma 1 (with $I = P^\bot$), we have that $P = P^\bot$ is a maximal closed l-ideal.

Conversely, it will suffice to show that if P is maximal closed, then it is prime. But in this case P^\bot is totally ordered by Lemma 1, so that if $a, b \in P$, there exists a $c \in P^\bot$ such that $|a| \cap |c| \neq 0$ and $|b| \cap |c| \neq 0$. Now $N(P^\bot) = N(A) \cap P^\bot = \{0\}$, so that P^\bot is a prime f-ring. Therefore, since $|a| \cap |c|, |b| \cap |c| \in P^\bot$, we have

$$0 \neq (|a| \cap |c|)(|b| \cap |c|) \subseteq |a| \cap |b| = |ab|.$$

Since $P^\bot \cap P = \{0\}$, it follows that $(|a| \cap |c|)(|b| \cap |c|) \in P$. Thus $ab \in P$, and P is prime.

Now from Lemma 4, Lemma 5, and Theorem 1 we readily conclude

Theorem 2. Let A be an f-ring with $N(A) = \{0\}$. Then the following statements are equivalent:

1. A has the ascending chain condition for closed l-ideals.
2. A has the descending chain condition for closed l-ideals.
3. A is isomorphic to a subdirect sum of a finite number of totally ordered rings having no nonzero divisors of zero.

As we have now seen the ascending and descending chain conditions for closed l-ideals are equivalent in any f-ring. However, even for f-rings with zero l-radical the ascending and descending chain conditions for l-ideals need not be equivalent. For example, the f-ring $Q[\lambda]$, which has zero l-radical, satisfies the ascending but not the descending chain condition for l-ideals. Note, however, that if $N(A) = \{0\}$ and if A satisfies the descending chain condition for l-ideals, then A is isomorphic to a finite direct sum of l-simple totally ordered rings [1, Theorem 17] and therefore satisfies the ascending chain condition for l-ideals.

We also observe that in Theorems 1 and 2 the "subdirect sum" of statement (3) cannot be strengthened to "direct sum." For let A be the sub-f-ring of the direct sum of two copies of $Q[\lambda]$ defined by

$$A = \{(f, g); f, g \in Q[\lambda] \text{ with } f(0) = g(0)\}.$$

Then $N(A) = \{0\}$ and A has the ascending chain condition for closed l-ideals, but A cannot be isomorphic to a direct sum of totally ordered rings.

2. Chain conditions in J-semi-simple f-rings. An l-ideal P of an f-ring A is l-primitive if and only if A/P is an l-simple ordered ring.
with identity. Thus an \(l \)-primitive \(l \)-ideal is prime. The \(J \)-radical, \(J(A) \), of \(A \) is the intersection of all \(l \)-primitive \(l \)-ideals of \(A \). Clearly \(N(A) \subseteq J(A) \). If \(J(A) = \{0\} \), then \(A \) is \(J \)-semi-simple.

The example \(\mathbb{Q}[x] \) shows that in \(f \)-rings with zero \(l \)-radical closed prime \(l \)-ideals need not be \(l \)-primitive. However, for \(J \)-semi-simple \(f \)-rings we have

Lemma 6. If \(P \) is a closed prime \(l \)-ideal of a \(J \)-semi-simple \(f \)-ring \(A \), then \(P \) is an \(l \)-primitive \(l \)-ideal and

\[
A = P \oplus P^\perp.
\]

Proof. By Lemmas 1 and 5, \(P^\perp \) is totally ordered and so, since \(J(P^\perp) = J(A) \cap P^\perp = \{0\} \) \([4, p. 188]\), \(P^\perp \) is an \(l \)-primitive \(f \)-ring. Let \(e \in P^\perp \) be the identity for \(P^\perp \). Then, since \(P \) is the right ring annihilator of \(P^\perp \),

\[
a = (a - ea) + ea \in P + P^\perp
\]

for all \(a \in A \). Thus, \(A = P + P^\perp \) and since \(P \cap P^\perp = \{0\} \), this sum is direct. Therefore \(A/P \) is isomorphic to \(P^\perp \) and \(P \) is an \(l \)-primitive \(l \)-ideal.

Theorem 3. Let \(A \) be a \(J \)-semi-simple \(f \)-ring satisfying the ascending chain condition for closed \(l \)-ideals. Then the set \(\Phi \) of closed prime \(l \)-ideals of \(A \) coincides with the set of \(l \)-primitive \(l \)-ideals of \(A \), and \(A \) is the direct sum of the \(l \)-ideals \(P_i \) (\(P \subseteq \Phi \)).

Proof. By Lemmas 4 and 5, \(\Phi \) is finite. Let \(\Phi = \{P_1, \ldots , P_n\} \). By Lemmas 2 and 6 the sum

\[
P_1^\perp + \cdots + P_n^\perp
\]

is direct and each \(P_i^\perp \) is an \(l \)-primitive \(f \)-ring. If \(e_i \in P_i^\perp \) is the identity of \(P_i^\perp \), then for each \(a \in A \)

\[
a - \sum_{i=1}^{n} e_i a \in P_1 \cap \cdots \cap P_n.
\]

By Lemma 4 this implies that

\[
a = \sum_{i=1}^{n} e_i a,
\]

whence

\[
A = P_1^\perp \oplus \cdots \oplus P_n^\perp.
\]

\(^4\) The notions of \(l \)-primitivity and of the \(J \)-radical as well as the structure theory of \(J \)-semi-simple \(f \)-rings are due to Johnson [4].
To complete the proof it will suffice, in view of Lemma 6, to show that each \(l \)-primitive \(l \)-ideal \(P \) of \(A \) is one of the \(P_i \) (\(i = 1, \ldots, n \)). But since \(P \) is proper \(P_i \subsetneq P \) for some \(i \) and so, since \(P \) is prime \(P_i \subsetneq P \). However, \(P_i \) is \(l \)-primitive, hence maximal [4, p. 187]; thus \(P_i = P \).

Theorem 4. For a \(J \)-semisimple \(f \)-ring \(A \) the following statements are equivalent:

1. \(A \) has the ascending chain condition for closed \(l \)-ideals.
2. \(A \) has the descending chain condition for closed \(l \)-ideals.
3. \(A \) has the ascending chain condition for \(l \)-ideals.
4. \(A \) has the descending chain condition for \(l \)-ideals.
5. \(A \) is isomorphic to the direct sum of a finite set of \(l \)-simple totally ordered rings with identity.

Proof. The implication \((1) \Rightarrow (5)\) is by Theorem 3. Also \((1) \Leftrightarrow (2)\) by Theorem 1. By Theorem II.5.8 of [4] we have \((4) \Leftrightarrow (5)\). Since \((5) \Rightarrow (3) \Rightarrow (1)\) are trivial, the proof is complete.

3. Remarks. If an \(f \)-ring \(A \) satisfies the ascending chain condition for \(l \)-ideals (closed \(l \)-ideals), then each \(l \)-ideal (closed \(l \)-ideal) of \(A \) is principal. For the \(l \)-ideal (closed \(l \)-ideal) generated by \(\{a_1, \ldots, a_n\} \) is also generated by \(|a_1| \lor \ldots \lor |a_n| \). Conversely, if each \(l \)-ideal of an \(f \)-ring \(A \) is principal, then \(A \) satisfies the ascending chain condition for \(l \)-ideals. Such a converse is not valid, however, for closed \(l \)-ideals. For example, in the \(f \)-ring of all real-valued functions on the integers every closed \(l \)-ideal is principal, but this \(f \)-ring clearly does not have the ascending chain condition for closed \(l \)-ideals.

If \(A \) is an arbitrary ring with the descending chain condition for right ideals, then \(A \) has the ascending chain condition for right ideals if and only if the additive group of \(A \) contains no \(p^\infty \) group (Fuchs [2]). Certainly the additive group of an \(f \)-ring has this property since this group must be torsion free. However, let \(A \) be the ring whose additive group is that of \(\mathbb{Q}[\lambda] \) and with multiplication defined by

\[
\left(\sum_{i=0}^{m} a_i \lambda^i \right) \left(\sum_{j=0}^{n} b_j \lambda^j \right) = \sum_{i=0}^{m} \left(\sum_{j=0}^{n} (a_i b_j) \lambda^i \right).
\]

Order \(A \) by

\[
a_0 + a_1 \lambda + \cdots + a_m \lambda^m > 0
\]

in case \(a_0 > 0 \) or \(a_0 = 0 \) and \(a_m > 0 \). Then \(A \) is a commutative \(f \)-ring with identity which satisfies the descending but not the ascending chain condition for \(l \)-ideals.

Finally, it is known [4, p. 213] that in an \(f \)-ring with zero \(l \)-radical
the descending chain condition on l-ideals and the descending chain condition on right l-ideals are equivalent. The corresponding statement for ascending chain conditions fails. For it can be shown that in an example due to Johnson [4, pp. 208–209] we have an f-ring with zero l-radical which satisfies the ascending chain condition for l-ideals but not the ascending chain condition for right l-ideals.\(^6\)

References

\(^6\) In the f-ring of this example the principal right l-ideals generated by the elements xa, x^2a, \cdots form a properly ascending chain.