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(3) converges to 1/(1+4a{ -v'). Therefore by Theorem 1 of [4] the
assumption that some neighborhood of v does not contain infinitely
many even approximants of f(a) is false. Hence the theorem is proved
for the case considered here. The other case is similar.
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A CHARACTERIZATION OF QF-3 ALGEBRAS

HIROYUKI TACHIKAWA

Let A be an associative algebra with a unit element 1 and
1) 0-4-X-X;—>---—>X, (n>0)

an exact sequence of A-A-homomorphisms with A4-A-projective
modules X,, 1=p=n. Recently concerning complete homology of
algebras, Nakayama [4] has proposed to classify algebrasaccord-
ing to how long an exact sequence (1) they have. In this paper we
shall show that the first class in his classification is the class of
QF-3 algebras (for definition see Thrall [S]), that is to say, 4 is
QF-3 if and only if 4 has an exact sequence 0—A4—X, where X is
A-A-projective.
To begin with we state

LEMMA 1. 4 is a QF-3 algebra if and only if A has a faithful left
A-module which is projective and injective.

This lemma was already used in [2] and [3] and for the proof we
shall refer to Theorems 3.1 and 3.2 of [1].
Now we shall prove
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THEOREM 2. Let A be an algebra with unit element finite over a field
K. 4 is QF-3 if and only if A-A-module A can be embedded into a
projective A-A-module X.

PROOF. Necessity. Assume that 4 have an exact sequence of
A-A-homomorphisms 0—A4 —X, where X is A-A-projective. As was
proved by Nakayama [4], there is a faithful left ideal L of 4 such that
the dual Hom (L, K) is monomorphic to a free right A-module P. De-
note N the radical of 4 and }(N) the left annihilator of V in 4.
If I(N)ex#0, where e, is a primitive idempotent of A,! then e\
must be an element of L. Indeed, suppose ex@ L, then Y .. Ae.
+ Ne) contains L because Z,ﬂ Ae,+ Ney, is the largest left ideal
which does not contain e,. On the other hand I(N)ex( D o Aec+Ney)
=0. Hence L is not faithful. Thus, if we denote by A the set of all
indices such that I(N)e\#0, we obtain erA AeCLCA. Hence we
have at once a direct sum decomposition of

L: L=} Aexea(Lf\A(l - Zex)).
reA AeA
Since Hom( X rea Aer, K) is injective, Hom( X rea Aer, K) is iso-
morphic to a direct summand of P. Hence Hom( X rex 4ey, K) is
projective. Thus D aea Ae, is projective and injective. Since every
simple right ideal is isomorphic to a submodule of Hom( X _xex A&, K),
> rea Aey is faithful. Therefore by Lemma 1 A4 is a QF-3 algebra.

Sufficiency. In the following we shall denote by A* and N* the
inverse isomorphic algebra of 4 and its radical respectively. An 4-4-
module 4 may be regarded as a left module over the algebra A ®x 4 *,
by setting (e ®b*)x=axb, @, b, xEA and b*SA*. Assume that 4 is
a QF-3 algebra. Let D_.ca Ae, and D _,eze,4 be a unique minimal
faithful left 4-module and a unique minimal faithful right 4-module
respectively. Then D ,ez A*¢¥ is a unique minimal faithful left
A*-module. If 7(N)e.~Aérw (resp. el(N)=é,»4), then 7(k)EZ
(resp. p(6)EA), where 4=A4/N and r(N)={xEA|Nx=0}. If
p&S and n€A, e,r(N)=0 and I(N)e,=0. It is known that A ®x A*
is also QF-3and D ,cr de,® D_,ez A*e} is a unique minimal faithful
left A ® A *-module.?

Now we shall prove that the left 4 ® 4 *-module 4 is monomorphic
to a direct sum of finite number of copies of D .ca.scz Ao ®A*er.
For this aim it is enough to show that every simple left 4 ® 4*-
submodule of 4 is isomorphic to a submodule of Y _.eca, ez Ae. @A *e¥,

1 By the category isomorphism we may assume that 4 is a core algebra.
2 See Theorem 17.7 in [3].
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because D yeaocz Ae,®A*e! is injective. Denote 9 the radical of
AQRA*. Then MONQRA*+AQRN*. Hence the socle of 4@A4*-
module A is contained in r(N) NI(N) and the socle of
D ervez Ae,®A*e is contained in D .eacez r(N)e@r(N*)ek.
Clearly

H(N)ee ® r(N)er = Atniny ® Aoy ~ (A ® A )iy ® 2o,
where 4*=A*/N*, Hence let

*
er(x)®6p(,)=gl+g2+...+gt

be a decomposition of e« ®eky into primitive idempotents of
A®A*, then every simple submodule of 7(N)e,®r(N*)e¥ is iso-
morphic to a (4 ®A*)g;/Ng:, 1 <i<t, because AQ A* is an almost
symmetric algebra. Therefore if f is obtained from a decomposition
of ¢,®e; into primitive idempotents: ¢,Qe;=f+ - - -, and if any
simple submodule of D ,carez 7(N)e.®r(N*)ek is not isomorphic to
(A ®A*)f/Nf, then u&Z or n€EA and hence (6, ®€}) (((N)Nr(N))=0.
Consequently f(I(N)Nr(N))=0. It follows that every simple com-
position factor of /(N)Mr(N) is isomorphic to a simple submodule of
> verwez r(N)e.®r(N*)e¥. This completes the proof.
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