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(3) converges to 1/(1+0/ V). Therefore by Theorem 1 of [4] the

assumption that some neighborhood of v does not contain infinitely

many even approximants of /(_) is false. Hence the theorem is proved

for the case considered here. The other case is similar.
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A CHARACTERIZATION OF QF-3 ALGEBRAS

HIROYUKI TACHIKAWA

Let A be an associative algebra with a unit element 1 and

(1) 0->,4->Xi-> X2-> • • -^Xn (n>0)

an exact sequence of ^4-^4-homomorphisms with _t-.4-projective

modules Xp, í^pún. Recently concerning complete homology of

algebras, Nakayama [4] has proposed to classify algebras accord-

ing to how long an exact sequence (1) they have. In this paper we

shall show that the first class in his classification is the class of

QF-3 algebras (for definition see Thrall [5]), that is to say, A is

QF-3 if and only if A has an exact sequence 0—*A—>X, where X is

^4-^4-projective.

To begin with we state

Lemma 1. A is a QF-3 algebra if and only if A has a faithful left
A-module which is projective and injective.

This lemma was already used in [2] and [3] and for the proof we

shall refer to Theorems 3.1 and 3.2 of [l].

Now we shall prove
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Theorem 2. Let A be an algebra with unit element finite over a field

K. A is QF-3 if and only if A-A-module A can be embedded into a
projective A-A-module X.

Proof. Necessity. Assume that A have an exact sequence of

^4-^4-homomorphisms 0—*A—*X, where X is A -A -projective. As was

proved by Nakayama [4], there is a faithful left ideal Loi A such that

the dual Hom(L, K) is monomorphic to a free right A -module P. De-

note N the radical of A and l(N) the left annihilator of N in A.

If l(N)e\^0, where ex is a primitive idempotent of A,1 then e\

must be an element of L. Indeed, suppose e\(£L, then __*** Ae„

-f-iVex contains L because ]£^x Ae^ + Nex is the largest left ideal

which does not contain e\. On the other hand l(N)e*( ^„¿x AeK-\-Ne\)

= 0. Hence L is not faithful. Thus, if we denote by A the set of all

indices such that /(AQex^O, we obtain J^xsa AeQLQA. Hence we

have at once a direct sum decomposition of

L: L= £ Aex®[Lr\A[\ - £ exY).
XeA \ \ X6A     //

Since rlom(^,\e¿. Ae\, K) is injective, Hom(^_xeA Ae\, K) is iso-

morphic to a direct summand of P. Hence Hom(^xeA-<4ex, K) is

projective. Thus ¿~^\ei.Ae\ is projective and injective. Since every

simple right ideal is isomorphic to a submodule of Horn( 23xea Ae\,K),

y.xEA Ae\ is faithful. Therefore by Lemma 1 A is a QF-3 algebra.

Sufficiency. In the following we shall denote by A* and N* the

inverse isomorphic algebra of A and its radical respectively. An A-A-

module A may be regarded as a left module over the algebra A (_>„ A *,

by setting (a®b*)x — axb, a, b, xÇ^A and b*ÇE.A*. Assume that A is

a QF-3 algebra. Let 2_«eA AeK and __i„es e„A be a unique minimal

faithful left .¿-module and a unique minimal faithful right ¿-module

respectively. Then ¿^á,^sA*e* is a unique minimal faithful left

¿4*-module. If r(N)e,^AëT^) (resp. eJ(N) «ë„(ff)_l), then 7t(k)£2

(resp. p(cr)GA), where 1 = A/N and r(N) = \xGA\ Nx = 0}. If

M$S and rç€jEA, elir(N) = 0 and l(N)e, = 0. It is known that A ®k A*

is also QF-3 and ^_«sa AeK® 5_»ez A *e* is a unique minimal faithful

left _l<g>.4*-module.2

Now we shall prove that the left A ®A *-module A is monomorphic

to a direct sum of finite number of copies of 2«sA.»es AeK®A*e*.

For this aim it is enough to show that every simple left A®A*-

submoduleof¿ is isomorphic to a submodule of 22«eA,<,es AeK®A*e*,

1 By the category isomorphism we may assume that A is a core algebra.

1 See Theorem 17.7 in [3].
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because ^«eA.cez AeK®A*e* is injective. Denote 9Î the radical of

A®A*. Then WDN®A*+A®N*. Hence the socle of A®A*-

module A is contained in riN) (~\ liN) and the socle of

^,eh.,^iAet®A*e* is contained in ^ï6a,î62 riN)eK®riN*)e*.

Clearly

riN)et ® r(A7 )e„ « ¿eVuj ® ^4 ep(ff) ** iA ® A )ëTM ® ëpi,),

where A* = A*/N*. Hence let

er(«) ® eptc) = gi + gi + ■ ■ • + gt

be a decomposition of e^igie*^) into primitive idempotents of

A®A*, then every simple submodule of r(Ar)e«®r(A7*)e* is iso-

morphic to a (4 ®^4*)g¿/9íg¿, 1=¿ = ¿, because yl®^4* is an almost

symmetric algebra. Therefore if / is obtained from a decomposition

of efigie* into primitive idempotents: e^®e*=/+ • • • , and if any

simple submodule of ^«eA.cres riN)eK®riN*)e* is not isomorphic to

iA ®A*)f/yif, then mC2 or w^A and hence ie,®e*)iliN)i\riN)) =0.
Consequently filiN)r\riN))=0. It follows that every simple com-

position factor of liN)C\riN) is isomorphic to a simple submodule of

X«eA,cre2 riN)eK®riN*)e*. This completes the proof.
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