A theorem on continued fractions and the fundamental inequalities
HTML articles powered by AMS MathViewer
- by David F. Dawson
- Proc. Amer. Math. Soc. 13 (1962), 698-701
- DOI: https://doi.org/10.1090/S0002-9939-1962-0150498-8
- PDF | Request permission
References
- David F. Dawson, Concerning convergence of continued fractions, Proc. Amer. Math. Soc. 11 (1960), 640–647. MR 117468, DOI 10.1090/S0002-9939-1960-0117468-5
- David F. Dawson, Continued fractions with absolutely convergent even or odd part, Canadian J. Math. 11 (1959), 131–140. MR 104943, DOI 10.4153/CJM-1959-017-7
- W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Trans. Amer. Math. Soc. 47 (1940), 155–172. MR 1320, DOI 10.1090/S0002-9947-1940-0001320-1
- H. S. Wall, Partially bounded continued fractions, Proc. Amer. Math. Soc. 7 (1956), 1090–1093. MR 82953, DOI 10.1090/S0002-9939-1956-0082953-0
Bibliographic Information
- © Copyright 1962 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 13 (1962), 698-701
- MSC: Primary 40.12
- DOI: https://doi.org/10.1090/S0002-9939-1962-0150498-8
- MathSciNet review: 0150498