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Let X be a topological space (no separation axioms are assumed)

and let BE be an arbitrary set of subsets of X. The aim of this paper is

to show that if we introduce in ï a notion of "convergence," having

certain relatively weak properties in common with the notion of con-

vergence in exp X studied by Mrovka [4] and Frolik [l], then the

two notions must coincide. Doing this, we shall also study to some

extent the duality becoming apparent in statements involving the

(closed) topological lim inf and lim sup of a net of sets and exhibit

some further properties of the class of nets converging in the sense of

[4; l]. The author gratefully acknowledges several inspiring dis-

cussions he had on this subject with Dr. Grimeisen who has a paper

on related problems in the process of being published.

In what follows we shall adhere to the terminology used in [5]

and [l] except for some differences in notation that are stated ex-

plicitly. Let 9C be the class of all nets in ï. If 9ÎG9C, then we shall

write 91' <^Ti for the statement: "9F is a subnet of 9c." Our results

are based on the following two lemmas. The first lemma is taken

from the proof of [l, Theorem 2.12]. A proof of the second one is

contained implicitly in the proofs of [l, Theorem 2.7] and [2, Hilfs-

satz 9].

Lemma 1. Let 9ÎG9C and let x££lim inf 9c. Then there is a subnet

W <9Î such that x^lim sup 9F.

Lemma 2. Let 9ÎG9C and let xGlim sup 9Î. Then there is a subnet

91'<9c such that xGlim inf 9F.

We shall combine these two lemmas by formulating Lemma 3, the

two statements of which being equivalent to the corresponding

lemmas (the first one also coinciding with [l, Theorem 2.7]). Recall

that lim inf SROim inf SR'CHm sup 9c'Chm sup 9Î for 9F <9cG9C.

Lemma 3. For all 9ÎG 9C

lim inf 9c =    0   lim sup 9t'
3¡'<9í

lim sup 9c =    U   lim inf 9^.
9l'<9l

There are three reasons for using Lemma 3 rather than Lemmas 1
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and 2: 1. It comes in handier for use. 2. It points out the duality

with which we shall be concerned in the sequel. 3. All the results of

the following discussions remain true if we replace 3Ê by any complete

lattice for which Lemma 3 holds as an additional axiom, lim inf and

lim sup being then defined fora net 91 = {Ad: dQD} in ï by lim inf 9t

= Ud0sD Dd>d0 Ad and lim sup 9c = n<,0eD U<¡><i0 Ad. It is easy to verify

that the remark preceding Lemma 3 holds for any complete lattice.

However, Lemma 3 is not true for complete lattices in general. Con-

sider the lattice consisting of the elements ^4„(« = 1,2, •••) and of

the elements l=Ai*UAj and 0 = Aii~\Aj for i^j. Let 9Î be the se-

quence {A i, A i, • ■ ■ }. Then lim inf 9Î' = 0 and lim sup 91' = 1 for all

subnets 9c'<9c and Lemma 3 fails.

Let lim be a function on a subclass G of 9C to Ï. For the purpose of

this paper only we shall call {C, lim} a convergence class in ï if C

is not empty and if the following conditions are satisfied :

(al) If KQQ and if W <SSl then WQQ.
(a2) If WQe, 9c'<9c and WQQ then lim 9c = lim 9c'.

We shall refer to (al) and (a2) together as condition (a). In what fol-

lows, {6, lim} shall be a convergence class in 3£. We shall also say

that a net 9cGC converges to lim 9Í.

Theorem 1. lim 9c = lim inf 9Ï for all 9cGe iff lim 9c = lim sup 9c

foraWÜQQ.

Proof. Suppose lim 9c = lim inf 9c for all 9c£C and fix a net 9cE<3.

By condition (a) we have lim 9c' = lim 9i for all 9c'<9c. By Lemma 3

and by our hypothesis we conclude lim sup 91 = Usri'<9c lim inf 9c'

= U9¡'<3f lim 91'= lim 91. An analogous reasoning completes the proof

in the other direction.

Theorem 1 may fail to hold if {(3, lim} is not required to satisfy

condition (a). Let X be arbitrary but nonvoid, let 3c = exp X and let

e=9C. Define lim 9c = lim inf 9c for all SSIQQ. Then (al) holds but
(a2) and Theorem 1 fail to hold, as can be seen by considering the

sequence 9c = {0, X, 0, X, • • • }. On the other hand, let 6 be the

class of all nets frequently in {o}. Define lim 9c = 0 for all 9c£G.

Then (a2) holds, but (al) and Theorem 1 fail to hold, as is again

demonstrated by the above example.

For the sake of brevity we shall call a convergence class {C, lim}

in 3E compact, if every net 9ÎG9C contains a converging subnet. For

every 9c£9C let g(9c)= {lim 9i': 9c'G6, 9î'<9c}.

Theorem 2. Let { C, lim} be a compact convergence class in H satisfy-

ing lim 9c = lim inf 9c = lim sup 9Í for all 9cGC Then, for all 91G9C,
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lim inf 9c = ng(9î) and lim sup 9c = US(9c).

Proof. Because of compactness and our hypothesis, we have

lim sup 901im 9c' and lim inf 9ÎClim 9F for every 9ÎG9C and for

some 9c'<9c, 9c'G6. Therefore by Lemma 3

lim inf 9c =    0   lim sup 9c' =        fl       lim 9c' = fl S(9c)

lim sup 91 =    U   lim inf 9c' =       U       lim 91'= Ug(9i).
îf'<3l 9l'<9t¡ SÎ'ëC

Theorem 2 is false in this general form without the assumption of

compactness of the convergence class { Q, lim}. Let X he a countably

infinite set with the discrete topology and let 3t* = exp X. Furthermore,

let 6 be the class of all constant nets in 3c and define lim 91 = lim inf 9c

= lim sup 9c for all 91G6. Then {Q, lim} is a noncompact con-

vergence class in £ satisfying the other hypothesis in Theorem 2. Let

91 be the sequence consisting alternatingly of the sets {xi} and

{x2, xt] (» = 3, 4, 5, ■ • • ). Then we have 0 = lim inf 91^0(5(91)

= {xi} and {xi, x2}=limsup9c^U6(9c)={xi}.

We note that under the hypotheses of Theorem 2 for every TVGï

there is at least one constant net converging to N. The following

converse of Theorem 2 is obvious.

Theorem 3. Let {6, lim} be a convergence class in 36. If lim inf 9c

= 06(91) or if lim sup 9c = US(9c) for all 9ÎG9C, then lim 91 = lim inf 91
= lim sup 9c for all 91G C

We note that under the hypothesis of Theorem 3 the convergence

class {6, lim} is "almost" compact, i.e. if lim inf 91 = 0(5(91) for all

9ÍG 9C, then every net 91 for which lim inf SSIt^X must contain at least

one converging subnet. An analogous statement applies in the dual

case. Combining the Theorems 1, 2 and 3 we get the following corol-

lary:

Corollary. Let { Q, lim} be a compact convergence class in £. FAe»

the following statements are equivalent :

(1) lim 9î = lim inf 31 for all 9cG6.
(2) lim 9c = lim sup 9c for all 9ÎGC
(3) lim inf 9c = n<5(9c) for all 9ÎG9C.
(4) lim sup 91 = U6(9c) for all 9cG9C.

In general, the equation lim inf 91 = lim sup 9c does not character-

ize nets belonging to a compact convergence class { 6, lim} in 3: even

if lim 91 = lim inf 91 = lim sup 9c for all 9cG C is supposed. Consider

a nonvoid finite discrete space X. Let 2E = exp X and define 6 to be
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the class of all constant nets in 3£ and lim 9c = lim inf 91 = lim sup 9Î

for all 9t£6. Then {G, lim} is a compact convergence class in ï.

However, the sequence [X, 0, 0, • • • } does not belong to 6. The

situation changes immediately if we impose (as is usually done) one

more condition on the convergence class { G, lim}.

Theorem 4. Let { Q, lim} be a compact convergence class satisfying

the following condition :

(b) If 91 £ 9C does not converge to N then there is an 9c' <9c such that

lim SSI"9^N for all WQG, 9c"<9t'.
If any of the four statements of the corollary holds for { Q, lim} then

e={9c£9C:liminf 91 = lim sup 9c}.

Proof. Let 9c£9C and lim inf 91 = lim sup 9c = 2V. Then, by the

corollary, lim 9c" = lim inf 9c" = lim sup 9c" = /V for all 9Î"£C,

9c"<9t. Because of condition (b), the net 9Î must converge to N.

As a trivial consequence, a compact convergence class { Q, lim} in

H, satisfying condition (b) and one of the four conditions stated in the

corollary, has also the other property usually required for convergence

classes [5, p. 74]: Each constant net converges to the constant.

Theorem 4 is in some sense a converse to the following result of

Frolik [1, Theorems 2.7 and 2.14]:

Let X be a regular topological space and let X = exp X. If

G = {9c G EC : lim inf 9c = lim sup 91} and if lim 9c = lim inf 9c = lim sup 9c
for all 9c£C, then { Q, lim} is a compact convergence class in X satisfy-

ing condition (b).

Therefore, in particular, the statements 3 and 4 of the corollary

are valid in this case. The hypotheses of Theorem 4 are also satisfied

if H is a compact Hausdorff space in some topology and if {G, lim}

is the convergence class of convergent nets in this topological space.

Applications of the above results to this special situation were implicit

in [2, §5] and [3, §2] where the author was concerned with a topology

in the set of all closed (normal) subgroups of a compact topological

group.
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