THE ACTION OF $\Gamma_{2 n}$ ON ($n-1$)-CONNECTED $2 n$-MANIFOLDS

C. T. C. WALL

This note makes the results of [1] more precise in certain cases. We assume the notations of that paper.

Theorem. If $n \equiv 3,5,6,7(\bmod 8), T$ is a $2 n$-sphere representing $x \in \Gamma_{2 n}, M$ is a closed ($n-1$)-connected $2 n$-manifold, and if there is an orientation preserving diffeomorphism h of $M \# T$ on M, then $x=0$.

It is known that Γ_{m} may be interpreted both as the quotient $\operatorname{Diff}\left(S^{m-1}\right) / i^{*} \operatorname{Diff}\left(D^{m}\right)$ and as the group of differential structures on $S^{m}(m \neq 4)$. The two interpretations are connected, for given a diffeomorphism f of S^{m-1}, representing x, we may glue two copies of D^{m} using it, and derive a differential structure on S^{m}. We shall reformulate this. We may suppose without loss of generality that f keeps a disc D^{m-1} fixed. Form a manifold L from $S^{m-1} \times I$ by identifying each ($P, 1$) with ($f P, 0$). Then L contains $D^{m-1} \times S^{1}$. Make a spherical modification, replacing this by $S^{m-2} \times D^{2}$.

Lemma. The resulting manifold is a sphere, representing x.
Proof. We cut the whole figure in half, cutting I at 0 and $1 / 2 . L$ falls into two pieces, of which one is ($S^{m-1} \times S_{+}^{1}$), where the modification replaces $D^{m-1} \times S_{+}^{1}$ by $S^{m-2} \times D_{+}^{2}$ (the subscript + indicates that the second coordinate is non-negative). This yields a disc; similarly for the other half. These are now to be glued by a diffeomorphism of the boundary which is the identity except on $D^{m-1} \times 1$, where it agrees with f. Thus it is equivalent to f. Hence we get a sphere, representing x.

We now prove the theorem. The diffeomorphism h may be supposed fixed on a disc, and then induces a diffeomorphism g of its complement N (whose boundary is $S^{2 n-1}$) on itself. Here we are thinking of the disc as used to form the connected sum $M \# T$, and so $g \mid \partial N=f$ represents x. Form V from $N \times I$ by identifying $(P, 1)$ with ($g P, 0$). Again we may suppose f fixed on a disc, and so $D^{2 n-1} \times S^{1}$ contained in ∂V. Form W by attaching along it $D^{2 n-1} \times D^{2}$. By the lemma, ∂W represents x. It is at once verified that W is $(n-1)$-connected with M, and in view of our hypothesis on n, it follows that

[^0]W is n-parallelisable. Now by the main theorem of [2], ∂W bounds a contractible manifold, and so represents the zero element of $\Gamma_{2 n}$.

References

1. C. T. C. Wall, Classification of ($n-1$)-connected $2 n$-manifolds, Ann. of Math. 75 (1962), 163-189.
2. -, Killing the middle homotopy group of odd dimensional manifolds, Trans. Amer. Math. Soc. 103 (1962), 421-433.

Trinity College, Cambridge

THE COEFFICIENTS IN THE EXPANSION OF CERTAIN PRODUCTS

L. CARLITZ ${ }^{1}$

1. The identities

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(1-p^{n} x\right)^{-1}=\sum_{n=0}^{\infty} \frac{x^{n}}{(1-p)\left(1-p^{2}\right) \cdots\left(1-p^{n}\right)} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(1-p^{n} x\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n} p^{n(n-1) / 2} x^{n}}{(1-p)\left(1-p^{2}\right) \cdots\left(1-p^{n}\right)} \tag{2}
\end{equation*}
$$

where $|p|<1$, are well known. The more general products

$$
\prod_{m, n=0}^{\infty}\left(1-p^{m} q^{n} x\right)^{-1}, \quad \prod_{m, n=0}^{\infty}\left(1-p^{m} q^{n} x\right) \quad(|p|<1,|q|<1)
$$

have been discussed in $[1 ; 2]$.
In the present note we consider the products
(3) $\prod_{n=0}^{\infty}\left(1-p^{n} x-q^{n} y\right)^{-1}, \prod_{n=0}^{\infty}\left(1-p^{n} x-p^{n} y\right)(|p|<1,|q|<1)$.

Put

$$
\begin{equation*}
F(x, y)=\prod_{n=0}^{\infty}\left(1-p^{n} x-q^{n} y\right)^{-1}=\sum_{r, \varepsilon=0}^{\infty} A_{r s} x^{r} y^{s} \tag{4}
\end{equation*}
$$

where $A_{r s}=A_{r s}(p, q)$ is independent of x and y. It follows from (4) that

[^1]
[^0]: Received by the editors January 8, 1962.

[^1]: Presented to the Society, November 10, 1961 ; received by the editors November 7, 1961.
 ${ }^{1}$ Supported in part by National Science'Foundation grant G-16485.

