A THEOREM ON INDUCED REPRESENTATIONS

ROBERT J. BLATTNER¹

In [1], we proved a criterion for the disjointness of two induced representations U^L and U^M of a Lie group G, where L and M are finite-dimensional unitary representations of compact subgroups H and K, respectively, of G. The purpose of this paper is to improve this theorem by getting a stronger conclusion, while dropping the conditions that G be a Lie group and H be compact, and that L and M be finite-dimensional. Moreover, the restriction on K is weakened to read: G has arbitrarily small neighborhoods of the identity invariant under the adjoint action of K on G. Finally, the proof given below is fairly elementary, while the proof in [1] is quite involved.

Notations and conventions: Let \mathfrak{U} be a topological vector space. $C(G, \mathfrak{U})$ will denote the space of continuous functions from G to \mathfrak{U} , equipped with the topology of uniform convergence on compact subsets of G while $C_0(G, \mathfrak{U})$ will denote the space of those $f \in C(G, \mathfrak{U})$ with compact support. If \mathfrak{U} is omitted it is understood that $\mathfrak{U} = \mathbf{C}$. If \mathfrak{U}_1 is another topological vector space, $\mathfrak{L}(\mathfrak{U}, \mathfrak{U}_1)$ will denote the space of continuous linear maps from \mathfrak{U} into \mathfrak{U}_1 equipped with the topology of bounded convergence. All integrations are with respect to right Haar measure. For any locally compact group G, δ_G will denote its modular function. If f, $g \in C_0(G)$, $f \circ g$ will denote the convolution of f and g, and f* is defined by $f^*(x) = \delta_G(x)^{-1} f(x^{-1})^{-1}$. If L and M are representations of G, R(L, M) will denote the space of intertwining operators for L and M (see [3]), while I(L, M) will denote the dimension of R(L, M). For the definition of induced representation used below, see [1]. Finally, for any function f on the group G and any $x \in G$, f_x and f^x are defined by $f_x(y) = f(x^{-1}y)$ and $f^x(y) = f(yx)$.

THEOREM. Let H and K be closed subgroups of the locally compact group G. Let L (resp. M) be a unitary representation of H (resp. K) on the Hilbert space v (resp. w). Suppose that G has arbitrarily small neighborhoods of the identity invariant under the adjoint action of K on G. Let m be the subspace of those $S \in C(G, \mathcal{L}(v, w))$ such that

$$S(\xi^{-1}x\eta) = \delta_H(\xi)^{-1/2}\delta_G(\xi)^{1/2}M_{\eta}^{-1}S(x)L_{\xi}$$

for all $\xi \in H$, $\eta \in K$, and $x \in G$. Then

 $I(U^L, U^M) \leq \dim \mathfrak{M},$

provided dim M is finite.

Received by the editors, November 10, 1961.

¹ National Science Foundation Fellow.

PROOF. We recall from [1] the bilinear map ϵ_H defined on $C_0(G) \times \mathbb{U}$ with values in the Hilbert space of U^L :

$$\epsilon_H(f, v)(x) = \int_H \delta_H(\xi)^{-1/2} \delta_G(\xi)^{1/2} f(\xi x) L_{\xi}^{-1} v d\xi$$

for $f \in C_0(G)$, $v \in \mathcal{V}$. ϵ_K is similarly defined from $C_0(G) \times \mathcal{W}$ into the space of U^M . Given $f, g \in C_0(G), v \in \mathcal{V}$, and $w \in \mathcal{W}$, we define the linear functional $\Phi(f, g, v, w)$ on $R(U^L, U^M)$ by setting $\Phi(f, g, v, w)(A) = (A \epsilon_H(f, v), \epsilon_K(g, w))$ and the linear functional $\Psi(f, g, v, w)$ on \mathfrak{M} by setting

$$\Psi(f, g, v, w)(S) = \int_G (f \circ g^*)(x)(S(x)v, w)dx.$$

 Φ and Ψ are linear in f and v are are conjugate-linear in g and w.

Let § (resp. 3) be the linear space of functionals spanned by the Φ 's (resp. Ψ 's). It is obvious that 5 separates \mathfrak{M} . That 8 separates $\mathcal{R}(U^L, U^M)$ follows from [1, Lemma 2]. We shall show that there is a linear map of 3 onto 8 which sends each $\Psi(f, g, v, w)$ onto $\Phi(f, g, v, w)$, and this will accomplish the proof.

According to [1, Lemma 2], there is a constant C_Q for each compact set Q in G such that

$$\left| \Phi(f, g, v, w)(A) \right| \leq C_{\varrho} ||f||_{\infty} ||g||_{\infty} ||v|| ||w|| ||A||$$

whenever f and g have their supports in Q. From this it follows easily that for each $h \in C_0(G)$, $A \in R(U^L, U^M)$, and $x \in G$ there is an operator $T_h(A)(x) \in \mathfrak{L}(\mathfrak{V}, \mathfrak{W})$ such that $(T_h(A)(x)v, w) =$ $\delta_G(x)^{-1} \Phi(h_x, h, v, w)(A)$ for all $v \in \mathfrak{V}$ and $w \in \mathfrak{W}$ and that $T_h \in \mathfrak{L}(R(U^L, U^M), C(G, \mathfrak{L}(\mathfrak{V}, \mathfrak{W}))).$

Now the standard proof of the complete regularity of G (cf. [4, pp. 28-30]) may be modified to show that for any neighborhood N of e in G, there is a nonzero positive continuous function h whose support is in N such that $h(\eta x) = h(x\eta)$ for all $x \in G$ and $\eta \in K$: one need merely require all neighborhoods of e mentioned therein to be invariant under the adjoint action of K on G. Let h be such a K-invariant function. For every $\eta \in K$, $\delta_G(\eta) \int_G h(x) dx = \int_G h(\eta^{-1}x) dx = \int_G h(x\eta^{-1}) dx = \int_G h(x) dx$. Since $\int_G h(x) dx > 0$, it follows that $\delta_G | K = 1$.

If *h* is a *K*-invariant function in $C_0(G)$, then $T_h(A) \in \mathfrak{M}$ for all $A \in R(U^L, U^M)$. In fact, $\epsilon_H(f_{\xi^{-1}}, v) = \delta_H(\xi)^{-1/2} \delta_G(\xi)^{-1/2} \epsilon_H(f, L_{\xi}v)$ and $\epsilon_H(f^x, v) = U_x^L \epsilon_H(f, v)$ for all $f \in C_0(G), v \in \mathfrak{V}, \xi \in H$, and $x \in G$ (cf. the proof of Theorem 3 in [1]). Similar statements hold for ϵ_K . Also

882

$$\begin{split} h_{\eta} &= h^{\eta^{-1}} \text{ for } \eta \in K. \text{ Therefore} \\ (T_{h}(A)(\xi^{-1}x\eta)v, w) &= \delta_{G}(\xi^{-1}x\eta)^{-1}\Phi(h_{\xi^{-1}x\eta}, h, v, w)(A) \\ &= \delta_{H}(\xi)^{-1/2}\delta_{G}(\xi)^{1/2}\delta_{G}(x)^{-1}\Phi(h_{x}^{\eta^{-1}}, h, L_{\xi}v, w)(A) \\ &= \delta_{H}(\xi)^{-1/2}\delta_{G}(\xi)^{1/2}\delta_{G}(x)^{-1}\Phi(h_{x}, h^{\eta}, L_{\xi}v, w)(A) \\ &= \delta_{H}(\xi)^{-1/2}\delta_{G}(\xi)^{1/2}\delta_{G}(x)^{-1}\Phi(h_{x}, h, L_{\xi}v, M_{\eta}w)(A) \\ &= \delta_{H}(\xi)^{-1/2}\delta_{G}(\xi)^{1/2}(M_{\eta}^{-1}T_{h}(A)(x)L_{\xi}v, w) \end{split}$$

for all $\xi \in H$, $\eta \in K$, $x \in G$, $v \in \mathcal{V}$, and $w \in \mathcal{W}$, as claimed.

We next assert that $\Psi(f, g, v, w) \circ T_h = \Phi(f, h \circ h^* \circ g, v, w)$ for $f, g, h \in C_0(G), v \in \mathcal{V}, w \in \mathcal{W}$, where h is K-invariant. To see this, note that $f \circ g = \int g(x) f^{x^{-1}} dx = \int f(x^{-1}) g_{x^{-1}} dx$, where the integrals on the right are strong integrals in the uniform topology. Using the continuity mentioned above of Φ in its arguments, we deduce that

$$\begin{split} \Psi(f, g, v, w)(T_h(A)) &= \int (f \circ g^*)(x^{-1}) \Phi(h_{x^{-1}}, h, v, w)(A) dx \\ &= \Phi\left(\int (f \circ g^*)(x^{-1})h_{x^{-1}}dx, h, v, w\right)(A) \\ &= \Phi(f \circ g^* \circ h, h, v, w)(A) \\ &= \Phi\left(\int (g^* \circ h)(x)f^{x^{-1}}dx, h, v, w\right)(A) \\ &= \int (g^* \circ h)(x) \Phi(f^{x^{-1}}, h, v, w)(A) dx \\ &= \int (g^* \circ h)(x) \Phi(f, h^x, v, w)(A) dx \\ &= \Phi\left(f, \int [(g^* \circ h)^*, v, w)(A), \right) \end{split}$$

as claimed.

Finally, let λ_{fgvw} be a set of complex numbers indexed by $C_0(G) \times C_0(G) \times \mathbb{V} \times \mathbb{W}$, all but a finite number of which vanish, such that $\sum \lambda_{fgvw} \Psi(f, g, v, w) = 0$. Then $\sum \lambda_{fgvw} \Phi(f, h \circ h^* \circ g, v, w) = 0$ for all K-invariant $h \in C_0(G)$. Letting $h \circ h^*$ approach the δ -measure, we see that $\sum \lambda_{fgvw} \Phi(f, g, v, w) = 0$. Therefore the linear map of 3 onto 8 mentioned at the beginning of this proof exists, and our proof is complete.

1962]

R. J. BLATTNER

For $x \in G$, we define a representation M^x of xKx^{-1} by setting $M_{\eta}^x = M_{x^{-1}\eta x}$ for all $\eta \in xKx^{-1}$. It is easy to see that

$$I(\delta_{H}^{-1/2}\delta_{G}^{1/2}L \mid H \cap xKx^{-1}, M^{x} \mid H \cap xKx^{-1})$$

depends only on L, M, and the H:K double coset D to which x belongs (cf. [3]). We shall denote this number by I(L, M, D). In what follows, \mathfrak{D} will denote the set of H:K double cosets. We retain the hypotheses of the Theorem.

COROLLARY 1. Let \mathfrak{D}_0 be the set of open $D \in \mathfrak{D}$. Suppose that $\bigcup \{D: D \in \mathfrak{D}_0\}$ is dense in G. Then $I(U^L, U^M) \leq \sum \{I(L, M, D): D \in \mathfrak{D}_0\}$, provided this sum is finite.

(A simple category argument shows that the denseness hypothesis is satisfied if H and K are denumerable at infinity and \mathfrak{D} is denumerable. Cf. [2, Lemma 3; 1].)

PROOF. To each $D \in \mathfrak{D}$, assign an element $x_D \in D$. Let

$$R = \prod \left\{ R(\delta_H^{-1/2} \delta_G^{1/2} L \mid H \cap x_D K x_D^{-1}, M^{x_D} \mid H \cap x_D K x_D^{-1}) \colon D \in \mathfrak{D}_0 \right\}.$$

For each $S \in \mathfrak{M}$, let $\Lambda(S)$ be the function from \mathfrak{D}_0 to $\mathfrak{L}(\mathfrak{V}, \mathfrak{W})$ defined by $\Lambda(S)(D) = S(x_D)$, $D \in \mathfrak{D}_0$. Λ is linear. It is also 1-1, since $\Lambda(S) = 0$ implies that $S \mid D = 0$ if $D \in \mathfrak{D}_0$ so that S vanishes on a dense subset of G. Finally, $\operatorname{Im}(\Lambda) \subseteq R$. In fact, let $\xi \in H \cap x_D K x_D^{-1}$. Then $x_D^{-1} \xi x_D \in K$ and $S(x_D) = S(\xi^{-1} x_D(x_D^{-1} \xi x_D)) = \delta_H^{-1/2}(\xi) \delta_G(\xi)^{1/2} M_{x_D^{-1} \xi x_D^{-1}} S(x_D) L_{\xi}$, whence our assertion. The corollary is an immediate consequence of the Theorem and the properties of Λ .

COROLLARY 2. Let \mathfrak{D}_n be the set of $D \in \mathfrak{D}$ for which I(L, M, D) = 0. Suppose that $\bigcup \{D: D \in \mathfrak{D}_n\}$ is dense in G. Then $I(U^L, U^M) = 0$.

PROOF. Let $S \in \mathfrak{M}$. The methods used in proving Corollary 1 show that $S(x_D) = 0$ for $D \in \mathfrak{D}_n$, whence S vanishes on a dense subset of G and we have our result.

References

1. Robert J. Blattner, On induced representations, Amer. J. Math. 83 (1961), 79-98.

2. F. Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97-205.

3. G. W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. 55 (1952), 101-139.

4. D. Montgomery and L. Zippin, *Topological transformation groups*, Interscience, New York, 1955.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY AND UNIVERSITY OF CALIFORNIA, LOS ANGELES

884