ON DECOMPOSITION INTO STOCHASTICALLY INDEPENDENT COMPONENTS

S. P. LLOYD

1. Introduction. Let \mathcal{G} be an arbitrary class of measurable sets in the probability space (Ω, \mathcal{F}, P). We denote by $\mathcal{G}^*\quad$ the class of sets which are stochastically independent of \mathcal{G}; that is,

$$\mathcal{G}^* = \{ H \in \mathcal{F} : P(H \cap G) = P(H)P(G) \text{ for all } G \in \mathcal{G}\}.$$

If $\mathcal{G} \vee \mathcal{G}^*$ denotes the smallest σ-field containing \mathcal{G} and \mathcal{G}^*, we say that decomposition (of \mathcal{F} relative to \mathcal{G}) holds if $\mathcal{G} \vee \mathcal{G}^* = \mathcal{F}$. In other words, when decomposition holds, every statistical experiment in the class under consideration (every \mathcal{F} set) can be expressed as a combination of (is in the σ-field generated by) experiments from the designated subclass (sets in \mathcal{G}) and experiments independent of the subclass (sets in \mathcal{G}^*). Examples will be given where decomposition holds and where it fails, and a sufficient condition for decomposition to hold will be established.

2. Some properties of independence. We digress briefly to exhibit some elementary properties of the * operation. We denote by \emptyset the σ-field consisting of sets of probability 0 and their complements. The following relations hold for arbitrary subclasses $\mathcal{G}, \mathcal{K}, \ldots$, of \mathcal{F}.

(i) \mathcal{G}^* is closed under the formation of complements, proper differences, and (countable) disjoint unions (but not necessarily intersections),

(ii) $\emptyset^* = \mathcal{F}$, $\mathcal{F}^* = \emptyset$,

(iii) $\mathcal{G}^* \supset \emptyset$,

(iv) If $\mathcal{G} \subset \mathcal{K}$ then $\mathcal{G}^* \supset \mathcal{K}^*$,

(v) $(\mathcal{G} \cup \mathcal{K})^* = \mathcal{G}^* \cap \mathcal{K}^*$,

(vi) $(\mathcal{G} \cap \mathcal{K})^* \subset \mathcal{G}^* \cup \mathcal{K}^*$,

(vii) $\mathcal{G} \subset \mathcal{G}^{**} = (\mathcal{G}^*)^*$,

(viii) $\mathcal{G}^{***} = \mathcal{G}^*$,

(ix) $\mathcal{G} \cap \mathcal{G}^* \subset \emptyset$,

(x) $(\mathcal{G} \cup \mathcal{G}^*)^* = \emptyset$, $(\mathcal{G} \cup \mathcal{G}^*)^{***} = \mathcal{F}$,

(xi) $(\mathcal{G} \cap \mathcal{G}^*)^* = \emptyset$, $(\mathcal{G} \cap \mathcal{G}^*)^{***} = \mathcal{F}$.

Proofs of the above properties are simple and straightforward, and are omitted. It is to be noted that the problem of when $\mathcal{G} \vee \mathcal{G}^* = \mathcal{F}$ holds is subsumed by the problem of when $\mathcal{K}^{***} = \mathcal{K}$ holds, from (xi).

Presented to the Society January 22, 1962 under the title On decomposition into independent components; received by the editors February 2, 1962.

292
3. Conditional cumulative distributions. In all that follows we assume that \mathcal{G} is a sub-σ-field of \mathcal{F}.

Theorem 1. $H \in \mathcal{G}^*$ if and only if $P(H \mid \mathcal{G}) = P(H)$ with probability 1.

Proof. $P(H \mid \mathcal{G})$ is the unique element of $L_\infty(\Omega, \mathcal{G}, P)$ satisfying

$$P(H \cap G) = \int \! P(H \mid \mathcal{G})_\omega \, dP(\omega)$$

for all $G \in \mathcal{G}$.

When $H \in \mathcal{G}^*$ the left-hand side is equal to $P(H)P(G)$, and a solution of (2) is clearly $P(H \mid \mathcal{G}) = \text{const} = P(H)$ with probability 1. Conversely, if $P(H \mid \mathcal{G})$ is constant with probability 1 then $P(H \cap G) = P(H)P(G)$ holds for every $G \in \mathcal{G}$, whence $H \in \mathcal{G}^*$.

If x is a real valued random variable we denote by $[x]$ the smallest σ-field with respect to which x is Borel measurable, that is, $[x]$ is the class of sets $\{\omega: x(\omega) \in B\}$ for all linear Borel sets B. The conditional cumulative distribution of x relative to \mathcal{G} will be denoted by

$$F(x, \omega) = P(x \leq \lambda \mid \mathcal{G})_\omega, \quad -\infty < \lambda < \infty, \omega \in \Omega.$$

We can and do assume that the conditional probability on the right-hand side is determined for each λ in such a way that $F(\cdot, \omega)$ is a bona fide cumulative distribution function for each $\omega \in \Omega$ [1, p. 29].

Theorem 2. Suppose $F(\lambda, \omega)$, $-\infty < \lambda < \infty$, $\omega \in \Omega$, is continuous on $-\infty < \lambda < \infty$ for each ω in the complement of a set of probability 0. Then the random variable ξ defined by

$$\xi(\omega) = F(x(\omega), \omega), \quad \omega \in \Omega$$

has the properties

(i) $[\xi] \subseteq [x] \vee \mathcal{G}$,

(ii) $[x] \subseteq [\xi] \vee \mathcal{G}$,

(iii) $[\xi] \subseteq \mathcal{G}^*$.

Remark. P. Lévy is the first to use the independence property of random conditional cumulatives; Lévy gives no proof [2]. Since there seems to be no published proof, and since proof is not as simple as would seem off hand, we give it here.

We need first a measure theoretic lemma. Let \mathcal{B} denote the σ-field of linear Borel sets, and let $(\Omega \times \Lambda, \mathcal{G} \times \mathcal{B})$ denote the product measurable space of (Ω, \mathcal{G}) with (Λ, \mathcal{B}), where Λ is the real line. If $\Gamma \subseteq \Omega \times \Lambda$ then Γ_ω denotes the ω section $\Gamma_\omega = \{\lambda \in \Lambda: (\omega, \lambda) \in \Gamma\}$. For any Borel set B, define

$$F(B, \omega) = \int_B F(d\lambda, \omega).$$
LEMMA 1. If $\Gamma \in \mathcal{G} \times \mathbb{R}$ then

$$P(x(\omega) \in \Gamma_\omega) = \int F(\Gamma_\omega, \omega)dP(\omega), \quad \Gamma \in \mathcal{G} \times \mathbb{R}. \tag{3}$$

PROOF. The properties of $F(\cdot, \cdot)$ insure that $\Delta_1(\Gamma) = \int F(\Gamma_\omega, \omega)dP(\omega)$ is a measure on $\mathcal{G} \times \mathbb{R}$. With $\delta: \Omega \rightarrow \mathcal{G} \times \mathbb{R}$ defined by $\delta(\omega) = (\omega, x(\omega))$, let Δ_2 be the measure $\Delta_2(\Gamma) = P(\delta^{-1}(\Gamma))$, $\delta^{-1}(\Gamma) \in \mathcal{F}$, noting that $\Delta_2(\Gamma) = P(x(\omega) \in \Gamma_\omega)$. When Γ is a $\mathcal{G} \times \mathbb{R}$ rectangle, $\Gamma = G \times B$, $G \in \mathcal{G}$, $B \in \mathbb{R}$, we have

$$\Delta_2(\Gamma) = P(G \cap \{ x \in B \})$$
$$= \int_B P(x \in B \mid G) \omega dP(\omega)$$
$$= \int F(\Gamma_\omega, \omega)dP(\omega) = \Delta_1(\Gamma).$$

Since measures Δ_1 and Δ_2 coincide on $\mathcal{G} \times \mathbb{R}$ rectangles, they coincide on $\mathcal{G} \times \mathbb{R}$, proving the lemma.

PROOF OF THEOREM 2. Define the pseudoinverses of $F(\cdot, \omega)$ as

$$\overline{G}(u, \omega) = \sup \lambda: F(\lambda, \omega) \leq u$$
$$\underline{G}(u, \omega) = \min \lambda: F(\lambda, \omega) \geq u,$$

$$0 < u < 1, \omega \in \Omega.$$

We have, for all values of the arguments,

$$F(\lambda, \omega) < u \quad \text{if and only if} \quad \lambda < \overline{G}(u, \omega), \quad 0 < u < 1, \quad -\infty < \lambda < \infty, \omega \in \Omega. \tag{4}$$

The assumed continuity of $F(\cdot, \omega)$ gives

$$F(\overline{G}(u, \omega), \omega) = F(\underline{G}(u, \omega), \omega) = u, \quad 0 < u < 1,$$

with probability 1.

We will show that the conditional distribution of ξ given \mathcal{G} is the uniform-on-the-unit-interval distribution with probability 1. For each $G \in \mathcal{G}$ and each u, $0 < u < 1$, we have

$$P(G \cap \{ \xi < u \}) = P(G \cap \{ F(x(\omega), \omega) < u \})$$
$$= P(G \cap \{ x(\omega) < \overline{G}(u, \omega) \})$$
$$= P(x(\omega) \in \Gamma_\omega),$$

where $\Gamma \subseteq \Omega \times \mathbb{R}$ is the set.
\[\Gamma = (G \times \Lambda) \cap \Delta, \]
\[\Delta = \{ (\omega, \lambda) : \lambda < G(u, \omega) \}. \]

It follows from (4) that \(G(u, \cdot) \) is \(\mathcal{G} \) measurable for each fixed \(u, \) \(0 < u < 1; \) to see that \(\Delta \) is \(\mathcal{G} \times \mathcal{A} \) measurable, observe that \(\Delta = \lim_n \Delta_n, \)

\[\Delta_n = \bigcup_{j=-\infty}^{\infty} D_{n,j} \times (-\infty, j/2^n) \]
\[D_{n,j} = \{ \omega : j/2^n < G(u, \omega) \leq (j + 1)/2^n \}, \]

and the approximating sequence is manifestly \(\mathcal{G} \times \mathcal{A} \) measurable. Applying Lemma 1, we have, for each \(G \in \mathcal{G} \) and each \(u, 0 < u < 1, \)

\[\int_{\mathcal{G}} P(\xi < u | \mathcal{G}) dP(\omega) = P(G \cap \{ \xi < u \}) = P(x(\omega) \in \Gamma_u) \]
\[= \int_{\mathcal{G}} F(G(\omega, \omega) - 0, \omega) dP(\omega) \]
\[= uP(G), \quad G \in \mathcal{G}, \quad 0 < u < 1, \]

whence \(P(\xi < u | \mathcal{G}) = u \) with probability 1, and this for each \(u, \) \(0 < u < 1. \)

That \(\xi \) is \([x] \cap \mathcal{G} \) measurable follows easily from (4). It remains to show that \(x \) is \([\xi] \cap \mathcal{G} \) measurable. Define random variables \(x \) and \(\hat{x} \) by

\[x(\omega) = G(\xi(\omega), \omega) \]
\[\hat{x}(\omega) = G(\xi(\omega), \omega), \]

(where \(\omega \in \Omega \)), observing that \(\hat{x} \) is \([\xi] \cap \mathcal{G} \) measurable, from (4), and that \(x(\omega) \leq \hat{x}(\omega) \) holds for each \(\omega \in \Omega. \) We will show that \(x = \hat{x} \) with probability 1. For each \(\omega \in \Omega \) let \(I(\omega) \) denote the union of the disjoint nontrivial closed intervals on which \(F(\cdot, \omega) \) is constant. Since \(\{ \omega : \hat{x}(\omega) < x(\omega) \} \subset \{ \omega : x(\omega) \in I(\omega) \}, \) it will suffice to prove that \(P(x(\omega) \in I(\omega)) = 0. \) If Lemma 1 is applicable we have

\[P(x(\omega) \in I(\omega)) = \int F(I(\omega), \omega) dP(\omega) = 0, \]

under the assumption that the \(\Omega \times \Lambda \) set \(\Gamma \) whose \(\omega \) sections are \(\Gamma_{\omega} = I(\omega) \) is \(\mathcal{G} \times \mathcal{A} \) measurable. To see that this is the case, observe that \(\Gamma = \lim_n \Gamma_n, \) with

\[\Gamma_n = \bigcup_{-\infty < j < k < \infty} G_{n,j,k} \times [(j - 1)/2^n, (k + 1)/2^n], \]
\[G_{n,j,k} = \{ \omega : F((j - 1)/2^n, \omega) < F(j/2^n, \omega) \}
\[= F(k/2^n, \omega) < F((k + 1)/2^n, \omega) \}.

Our main result is the following, to the effect that if there exists one such random variable ξ then there exist many.

Theorem 3. Suppose that there exists a random variable independent of \mathcal{G} whose distribution is continuous. Then decomposition holds; that is, $\mathcal{G} \cap \mathcal{G}' = \mathcal{F}$.

Proof. From Theorem 2, we may assume given a random variable ξ with the property $P(\xi < u | \mathcal{G}) = u$ with probability 1, $0 < u < 1$. For arbitrary $A \in \mathcal{F}$ consider the random variable $\eta_A = \chi_A + \xi$, where χ_A denotes the characteristic function of set A. The conditional distribution of η_A has the property

$$P(\lambda_1 \leq \eta_A < \lambda_2 | \mathcal{G}) = P(A \cap [\lambda_1 - 1 \leq \xi < \lambda_2 - 1] | \mathcal{G})$$

$$+ P(A' \cap [\lambda_1 \leq \xi < \lambda_2] | \mathcal{G}) \leq 2(\lambda_2 - \lambda_1)$$

with probability 1, implying that some version of $P(\eta_A < \lambda | \mathcal{G})$ is continuous in λ with probability 1. Applying Theorem 2 to η_A, we obtain a random variable ξ_A such that η_A is $[\xi_A] \cap \mathcal{G}$ measurable and such that $[\xi_A] \subset \mathcal{G}'$. Since $0 < \xi < 1$ with probability 1, set A differs from the set $\{\eta_A > 1\}$ by a set of probability 0, whence $A \subset [\eta_A \cap \mathcal{G}] \cap [\xi_A \cap \mathcal{G}' \cap \mathcal{G}]$ modulo set of probability 0. But A is an arbitrary element of \mathcal{F}, so that $\mathcal{F} \subset \mathcal{G} \cap \mathcal{G}'$, or since the reverse inclusion is trivial, $\mathcal{F} = \mathcal{G} \cap \mathcal{G}'$.

4. Examples.

Example 1. Decomposition holds. Let (Ω, \mathcal{F}, P) be atomless, and let \mathcal{G} be purely atomic. That is, there is a finite or countable partition of Ω into disjoint sets G_i, $P(G_i) > 0$, $i = 1, 2, \ldots$, and \mathcal{G} is the σ-field generated by the G_i, $i = 1, 2, \ldots$. From Theorem 1, $H \in \mathcal{G}'$ if and only if $P(H \cap G_i) / P(G_i)$ is independent of i. To see that decomposition holds, let $A \in \mathcal{F}$ be an arbitrary measurable set, and define $H_{ii} = A \cap G_i$, $i = 1, 2, \ldots$. Since (Ω, \mathcal{F}, P) is atomless, for each i there exist for all j sets $H_{ij} \subset G_j$ such that $P(H_{ij}) / P(G_j) = P(H_{ij}) / P(G_i)$. With $H_i = \bigcup_j H_{ij}$, we have $H_i \in \mathcal{G}'$, $i = 1, 2, \ldots$, and finally $A = \bigcup_i H_{ii} = \bigcup_i (G_i \cap H_i) \subset \mathcal{G} \cap \mathcal{G}'$. We will prove also that $\mathcal{G} = \mathcal{G}''$ modulo sets of probability 0. Suppose $A \in \mathcal{F}$ does not differ from some \mathcal{G} set by a set of probability 0. Then both $P(A \cap H_i) > 0$ and $P(A' \cap G_i) > 0$ hold for at least one i, say $i = j$. Choose $H_j \subset A \cap G_j$ and $K_j \subset A' \cap G_j$ so that $P(H_j) = P(K_j) > 0$. For all $k \neq j$ choose sets $H_k = K_k \subset G_k$ so that $P(H_k) / P(G_k) = P(H_j) / P(G_j)$. Defining $H = \bigcup_i H_i$, $K = \bigcup_i K_i$, we have $H \subset \mathcal{G}'$ and $P(H) = P(K)$. Since $P(A \cap H) - P(A \cap K) = 2P(H_j) > 0$, at least one of H, K is not independent of A, implying $A \not\in \mathcal{G}''$. Thus $\mathcal{G}'' \subset \mathcal{G}$ modulo sets of probability 0, whence $\mathcal{G}'' = \mathcal{G}$ modulo sets of probability 0, from (1.vii).
Example 2. Decomposition fails. Let \(\Omega = \{(x, i) : 0 \leq x \leq 1, i = 1, 2\} \), and let probability have density \(p_i(x) \) at \((x, i)\) relative to linear Borel measure on the two intervals which comprise \(\Omega \). Assume that \(p_1(x) + p_2(x) = 1, 0 \leq x \leq 1 \). If \(B_1, B_2 \) are Borel subsets of the unit interval we denote by \([B_1, B_2] \) the \(\omega \) set \(\{(x, 1) : x \in B_1\} \cup \{(x, 2) : x \in B_2\} \). Let \(\mathcal{G} \) be the sub-\(\sigma \)-field of sets of the form \([B, B]\) for all Borel \(B \). It is readily verified that conditional probabilities relative to \(\mathcal{G} \) have the form

\[
P([B_1, B_2] \mid \mathcal{G})_{(x,i)} = x_{B_1}(x)p_1(x) + x_{B_2}(x)p_2(x),
\]

\(0 \leq x \leq 1, i = 1, 2\).

For each \(\omega \) the measure \(P(\cdot \mid \mathcal{G})_\omega \) is purely atomic, the measures of the two atoms being \(p_1(x) \), \(p_2(x) \). It is easy to choose \(p_1 \), \(p_2 \) in such a way that the only constant functions of the form (5) are 0 and 1, which is to say, \(\mathcal{G}^* = \emptyset \). Thus decomposition fails. Note also that \(\mathcal{G}^* = \emptyset \neq \mathcal{G} \).

Example 2 suggests the following conjecture: for decomposition to hold it is sufficient that the conditional probability \(P(\cdot \mid \mathcal{G}) \) be an atomless measure with probability 1. (This statement makes sense in the Stone representation space; see [3].)

5. Acknowledgment. Example 2 was suggested by Professor Murray Rosenblatt, and the author wishes to express his thanks to Professor Rosenblatt for a number of interesting conversations on this problem.

References

Bell Telephone Laboratories,
Murray Hill, New Jersey