MINIMAL REGULAR SPACES

MANUEL P. BERRI AND R. H. SORGENFREY

1. **Introduction.** If \mathcal{O} is a property of topologies, a space (X, 3) is minimal \mathcal{O} if 3 has property \mathcal{O} , but no topology on X which is strictly weaker (=smaller) than 3 has \mathcal{O} . Such spaces have been investigated for the case \mathcal{O} =Hausdorff [2; 5], a well-known result being that while every compact space is minimal Hausdorff, the converse is not true. We consider here the case \mathcal{O} =regular; other properties are discussed by one of the authors in a paper to appear.

Filter-bases on spaces will be used extensively (for definitions not given here, see [1]). A filter-base is open (closed) if its elements are open (closed) sets. A filter-base will be called regular if it is open and is equivalent to a closed filter-base. The name is suggested by the fact that the filter-base of open neighborhoods of a point of a regular space is regular since it is equivalent to the filter-base of closed neighborhoods of that point.

- 2. Characterizations of minimal regular spaces. We will be concerned with spaces satisfying one or both of the following conditions:
- (α) Every regular filter-base which has a unique adherent point is convergent.
 - (β) Every regular filter-base has an adherent point.

THEOREM 1. A regular space which satisfies (α) also satisfies (β) .

PROOF. Suppose $\mathfrak B$ is a regular filter-base on the regular space $(X, \mathfrak I)$ and that $\mathfrak B$ has no adherent point. Let $\mathfrak C$ be a closed filter-base equivalent to $\mathfrak B$. Fix $p \in X$ and let $\mathfrak A$ and $\mathfrak V$ be the filter-bases of open and closed neighborhoods of p, respectively. Since $\mathfrak I$ is regular, $\mathfrak A$ and $\mathfrak V$ are equivalent. Then $\mathfrak R = \{B \cup U \colon B \in \mathfrak B, U \in \mathfrak A\}$ is an open filter-base equivalent to the closed filter-base $\{C \cup V \colon C \in \mathfrak C, V \in \mathfrak V\}$ and is therefore regular. It is clear that p is the unique adherent point of $\mathfrak A$ and that $\mathfrak A$ does not converge to p. This denial of the hypothesis establishes the theorem.

THEOREM 2. In order that a regular space be minimal regular, it is necessary and sufficient that it satisfy (α) .

PROOF. Suppose (X, 5) is regular and that \mathfrak{B} is a regular filter-base having the unique adherent point p to which it does not converge.

Presented to the Society, October 30, 1961; received by the editors March 12,1962.
As used in this paper, the condition of regularity includes T_1 separation, i.e.,

singletons are closed.

For each $x \in X$, let $\mathfrak{U}(x)$ be the filter-base of 3-open neighborhoods of x and define $\mathfrak{U}'(x) = \mathfrak{U}(x)$ if $x \neq p$ and $\mathfrak{U}'(p) = \{U \cup B : U \in \mathfrak{U}(x), B \in \mathfrak{B}\}$. There is a topology 3' on X such that $\mathfrak{U}'(x)$ is an open base at x for each $x \in X$. It is clear that 3' is strictly weaker than 3 (there is a $U \in \mathfrak{U}(p)$ which contains no set of $\mathfrak{U}'(p)$ since \mathfrak{B} does not converge to p). Moreover, 3' is certainly regular at each $x \neq p$, while regularity at p follows readily from the fact that \mathfrak{B} is equivalent to a closed filter-base. Hence 3 is not minimal regular.

To establish the sufficiency of the condition, let (X, 3) be a regular space satisfying (α) and let 3' be a regular topology on X which is weaker than 3. For arbitrary $x \in X$ let $\mathfrak{U}(x)$ and $\mathfrak{U}'(x)$ be the open neighborhood systems of x in the 3 and 3' topologies, respectively. The filter-base $\mathfrak{U}'(x)$ is 3'-regular and has x as its only adherent point. Since 3' is weaker than 3, $\mathfrak{U}'(x)$ is regular and has unique adherent point x in (X, 3). By (α) $\mathfrak{U}'(x)$ converges to x in (X, 3). Hence $\mathfrak{U}(x)$ must be weaker than $\mathfrak{U}'(x)$, and, since the reverse is true, it follows that 3 and 3' are identical and that 3 is minimal regular.

REMARK. The two previous results show that condition (β) is necessary in order that a regular space be minimal regular. Whether it is sufficient is an open question. Theorem 3 below, however, throws some light on the problem.

LEMMA. If the subspace X of the regular space Y satisfies (β) , then X is closed in Y.

PROOF. Suppose $p \in \overline{X} - X$. Let $\mathfrak U$ and $\mathfrak V$ be, respectively, the open and closed neighborhood systems of p in Y. Then the filter-base $\mathfrak B = \{X \cap U \colon U \in \mathfrak U\}$ is open (relative to X), is equivalent to the closed (relative to X) filter-base $\{X \cap V = V \in \mathfrak V\}$, and is therefore regular on X. As a filter-base on Y, $\mathfrak B$ is stronger than $\mathfrak U$ and hence has no adherent point other than p in Y. It follows that $\mathfrak B$ has no adherent point at all in X, a contradiction.

THEOREM 3. Any completely regular space satisfying (β) is compact and therefore minimal regular.

PROOF. Let X be completely regular and satisfy (β) and let Y be its Stone-Čech compactification. The above lemma yields the desired result.

THEOREM 4. Any minimal regular subspace of a regular space is closed.

PROOF. This is an immediate consequence of the lemma since the subspace must satisfy (β) .

REMARK. It is easy to see that a subspace of a minimal regular space which is both open and closed is itself minimal regular. The example of the next section shows that a closed subspace of a minimal regular space need not be minimal regular.

3. A minimal regular noncompact space. The example given here is a slight modification of an unpublished one due to Richard Arens of a regular space which is not completely regular. His example has also been used by Hewitt [3] in constructing a regular space on which every continuous real-valued function is constant.

Description of the space (Z, \Im) . Let J be the set of all integers, ω' the ordinals $\leq \omega$, and Ω' the ordinals $\leq \Omega$ (the first uncountable one). Equip each of these sets with the order topology and consider the space $J \times \omega' \times \Omega' - \{(n, \omega, \Omega) : n \in J\}$, the relative product topology being used. To obtain the space Y, make the following identifications and use the quotient topology \Im^* : for even n, identify (n, ω, y) and $(n+1, \omega, y)$; for odd n, identify (n, x, Ω) and $(n+1, x, \Omega)$. We will continue to use the symbols (n, x, y) for the points of Y, thus $(n, \omega, y) = (n+1, \omega, y)$ for even n. For $n \in J$, let $Q_n = \{(n, x, y) : x < \omega, y < \Omega\}$ and $Z_n = \overline{Q}_n = \{(n, x, y) : (x, y) \neq (\omega, \Omega)\}$. Let p and q be points not in Y and topologize $Z = \{p\} \cup \{q\} \cup Y$ by letting an open base at p be all sets of the form

$$V_n(p) = \bigcup \{Z_i : i > n\} \cup Q_n \cup \{p\}, \qquad n = 1, 2, \cdots,$$

and an open base at q be all sets of the form

$$V_n(q) = \bigcup \{Z_{-i}: i > n\} \cup Q_{-n} \cup \{q\}, \qquad n = 1, 2, \cdots,$$

which open bases at points of Y are those they had in 5^* . Let the resulting topology on Z be 3.

Properties of the space (Z, 5). 1. (Z, 5) is regular.

PROOF. It is easy to see that singletons are closed, and regularity is clear except possibly at p and q. Regularity at p, say, follows from $[V_{n+1}(p)] \subset V_n(p)$.

We will say that a set $S \subset Z$ gets into the n-corner if whenever $x_0 < \omega$, $y_0 < \Omega$, there is a point $(n, x, y) \in S$ for some $x > x_0$ and $y > y_0$.

2. If the open set U gets into the n-corner, then there is an infinite sequence $\{x_i\}$ of distinct finite ordinals such that $(n, x_i, \Omega) \in \overline{U}$.

PROOF. If not, there is an $x_0 < \omega$ such that if $x_0 < x < \omega$, $(n, x, \Omega) \oplus \overline{U}$ and hence there is a $y_x < \Omega$ such that $(n, x, y) \oplus U$ for $y_x < y$. Since $\{y_x: x_0 < x < \omega\}$ is countable, its least upper bound, y_0 , is less than Ω . Therefore if $x_0 < x < \omega$ and $y_0 < y$, then $(n, x, y) \oplus U$. Since U gets into the n-corner, it must then be that $(n, \omega, y) \in U$ for some $y > y_0$. But

since U is open, there is an x, $x_0 < x < \omega$, such that $(n, x, y) \in U$. This contradiction establishes the property.

3. Let U, V, and W be open sets such that $U \subset \overline{U} \subset V \subset \overline{V} \subset W$. Then if U gets into the n-corner, W gets into the (n-1)- and (n+1)-corners.

PROOF FOR n ODD. (The proof for the case n even is similar.) Take $x_0 < \omega$, $y_0 < \Omega$. By property 2, there are infinitely many distinct x_i such that $x_0 < x_i < \omega$ and $(n, x_i, \Omega) \in \overline{U}$. Since $(n+1, x_i, \Omega) = (n, x_i, \Omega) \in \overline{U} \subset W$, W gets into the (n+1)-corner. Since $(n, x_i, \Omega) \in V$, there exists, for each i, a $y_i < \Omega$ such that if $y > y_i$, then $(n, x_i, y) \in V$. Let y' be the least upper bound of the set $\{y_0, y_1, y_2, \cdots\}$. Then for any $y, y' < y < \Omega$, $(n, x_i, y) \in V$ for all x_i ; hence $(n, \omega, y) = (n-1, \omega, y) \in \overline{V} \subset W$, and W gets into the (n-1)-corner.

4. If \mathfrak{B} is a regular filter-base and, for some n, each set of \mathfrak{B} gets into the n-corner, then p and q are adherent points of \mathfrak{B} .

PROOF. Let N be a neighborhood of p and $B \in \mathfrak{B}$. There is an integer k such that $Q_k \subset V_k(p) \subset N$; let k = k - n. Since \mathfrak{B} is regular, there are 2h+1 sets $U_i \in \mathfrak{B}$ such that

$$U_1 \subset \overline{U}_1 \subset U_2 \subset \overline{U}_2 \subset \cdots \subset U_{2h+1} = B.$$

Since U_1 gets into the *n*-corner, *h* applications of property 3 shows that $B = U_{2h+1}$ gets into the n+h=k-corner; i.e., $B \cap Q_k \neq 0$, whence $B \cap N \neq 0$, and *p* is an adherent point of \mathfrak{B} . The case for *q* is similar.

5. (Z, 5) is not completely regular and hence not compact.

PROOF. Let f be a bounded, real-valued continuous function on Z. For some fixed n and each $y < \Omega$, let $g(y) = f(n, \omega, y)$. Then g is continuous, and it is well-known (e.g., [4, p. 167, ex. Q]) that there is a $y_0 < \Omega$ and a constant c such that g(y) = c for $y > y_0$. It follows that each set of the regular filter-base $\{\{p \in Z: | f(p) - c| < \epsilon\}: \epsilon > 0\}$ gets into the n-corner. Since, by property 4, p and q are adherent points of this filter-base, it is clear that f(p) = f(q) = c and (Z, 3) is not completely regular.

In the proof of the following property we repeatedly use the elementary fact that if \mathfrak{B} is a regular filter-base and $C \subseteq \mathfrak{B}$, then $\mathfrak{C} = \{C \cap B : B \subseteq \mathfrak{B}\}$ is a regular filter-base equivalent to \mathfrak{B} . We will call \mathfrak{C} the C-section of \mathfrak{B} .

6. (Z, 5) is minimal regular.

PROOF. Let @ be a regular filter-base with unique adherent point r. We will show that @ converges to r; the property will then follow from Theorem 2.

Case 1. $r \neq p$, q. Then some set $C \in \mathbb{G}$ meets only a finite number of Z_n 's. Let \mathfrak{C} be the C-section of \mathfrak{G} ; then there is an integer k such that

each set of \mathbb{C} is a subset of $K = \bigcup \{z_n : |n| \leq k\}$. It follows from property 4 that for each n, $|n| \leq k$, there is a set $D_n \in \mathbb{C}$ which does not get into the n-corner. Let D be a set of \mathbb{C} lying in $\bigcap \{D_n : |n| \leq k\}$; then ordinals $x_0 < \omega$, $y_0 < \Omega$ exist such that D does not meet the open set $W = \{(n, x, y) : x > x_0, y > y_0\}$. Hence \mathfrak{D} , the D-section of \mathbb{C} , is a filter-base equivalent to \mathfrak{G} , and each of its sets lies in the compact subspace K - W of Z. It is clear that \mathfrak{D} , and hence \mathfrak{G} , must converge to their unique adherent point r.

Case 2. r=p. (The proof for the case r=q is similar.) If $\mathfrak B$ does not converge to p, there is a neighborhood $V_k(p)$ which contains no set of $\mathfrak B$. Since q is not an adherent point of $\mathfrak B$, there is an integer h and a set C of $\mathfrak B$ such that $C\cap Z_n=\varnothing$ for n< h. It follows from property 4 that for each $n, h\leq n\leq k$, there is a set D_n in the C-section $\mathfrak C$ of $\mathfrak B$ which does not get into the n-corner. Let D be a set of $\mathfrak C$ lying in $\bigcap\{D_n\colon h\leq n\leq k\}$; then ordinals $x_0<\omega$ and $y_0<\Omega$ exist such that D does not meet the set $W=\{(n,x,y)\colon h\leq n\leq k,x>x_0,y>y_0\}$. The D-section $\mathfrak D$ of $\mathfrak C$ is a filter-base equivalent to $\mathfrak B$ and each of its sets meets the compact set $F=\bigcup\{Z_n\colon h\leq n\leq k\}-W$. Hence $\mathfrak E=\{F\cap E\colon E\subset \mathfrak D\}$ is a filter-base stronger than $\mathfrak B$ and each of its sets is contained in F. Since F is compact, $\mathfrak E$, and hence $\mathfrak B$, must have an adherent point $z\subset F$. Since $z\neq p$, a contradiction results.

7. (Z, 5) has a closed subspace which is not minimal regular.

PROOF. Let $S = \{(1, x, \Omega) : x < \omega\}$. It is clear that S is a closed subset of Z. But, with the relative topology, S is an infinite discrete space, which is certainly not minimal regular.

REFERENCES

- 1. N. Bourbaki, *Topologie générale*, Actualités Sci. Ind., Hermann, Paris, 1951, 858–1142.
- 2. ——, Espaces minimaux et espaces complètement séparés, C. R. Acad. Sci. Paris 205 (1941), 215-218.
 - 3. E. Hewitt, On two problems of Urysohn, Ann. of Math. (2) 47 (1946), 503-509.
 - 4. J. L. Kelley, General topology, Van Nostrand, New York, 1955.
- 5. A. Ramanathan, Maximal Hausdorff spaces, Proc. Indian Acad. Sci., Sect. A 26 (1947), 31-42.

University of California, Los Angeles