MINIMAL REGULAR SPACES
MANUEL P. BERRI AND R. H. SORGENFREY

1. Introduction. If ® is a property of topologies, a space (X, J) is
minimal ® if 3 has property @, but no topology on X which is strictly
weaker (=smaller) than 3 has ®. Such spaces have been investigated
for the case ®=Hausdorff [2; 5], a well-known result being that
while every compact space is minimal Hausdorff, the converse is not
true. We consider here the case ® =regular;! other properties are dis-
cussed by one of the authors in a paper to appear.

Filter-bases on spaces will be used extensively (for definitions not
given here, see [1]). A filter-base is open (closed) if its elements are
open (closed) sets. A filter-base will be called regular if it is open and
is equivalent to a closed filter-base. The name is suggested by the fact
that the filter-base of open neighborhoods of a point of a regular space
is regular since it is equivalent to the filter-base of closed neighbor-
hoods of that point.

2. Characterizations of minimal regular spaces. We will be con-
cerned with spaces satisfying one or both of the following conditions:

(o) Every regular filter-base which has a unique adherent point is
convergent.

(8) Every regular filter-base has an adherent point.

THEOREM 1. A regular space which satisfies (o) also satisfies (B).

ProoF. Suppose ® is a regular filter-base on the regular space
(X, 3) and that ® has no adherent point. Let € be a closed filter-base
equivalent to ®. Fix pE X and let U and U be the filter-bases of open
and closed neighborhoods of p, respectively. Since J is regular, U and
Q are equivalent. Then &= {BUU: BE®, UEU} is an open filter-
base equivalent to the closed filter-base { CUV: CEe, VED} and is
therefore regular. It is clear that p is the unique adherent point of ®
and that ® does not converge to p. This denial of the hypothesis
establishes the theorem.

THEOREM 2. In order that a regular space be minimal regular, it is
necessary and sufficient that it satisfy (o).

Proor. Suppose (X, J) is regular and that ® is a regular filter-base
having the unique adherent point p to which it does not converge.
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1 As used in this paper, the condition of regularity includes T; separation, i.e.,
singletons are closed.
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For each x& X, let U(x) be the filter-base of 3-open neighborhoods
of x and define U (x) =WU(x) if x>#p and W (p)={UUB: USU(x),
BE(B}. There is a topology 3’ on X such that U’(x) is an open base at
x for each xEX. It is clear that 3’ is strictly weaker than 3 (there
isa U&U(p) which contains no set of U’ (p) since ® does not converge
to p). Moreover, 3’ is certainly regular at each x> p, while regularity
at p follows readily from the fact that ® is equivalent to a closed
filter-base. Hence 3 is not minimal regular.

To establish the sufficiency of the condition, let (X, 3) be a regular
space satisfying (a) and let 3’ be a regular topology on X which is
weaker than 3. For arbitrary x€X let U(x) and U’ (x) be the open
neighborhood systems of x in the 3 and 3’ topologies, respectively.
The filter-base U’(x) is 3'-regular and has x as its only adherent point.
Since 3’ is weaker than 3, U (x) is regular and has unique adherent
point x in (X, 3). By (a) U'(x) converges to x in (X, 3). Hence U(x)
must be weaker than U/(x), and, since the reverse is true, it follows
that 3 and 3’ are identical and that 3 is minimal regular.

REMARK. The two previous results show that condition (8) is
necessary in order that a regular space be minimal regular. Whether
it is sufficient is an open question. Theorem 3 below, however, throws
some light on the problem.

LeEmMA. If the subspace X of the regular space VY satisfies (8), then X
1s closed in Y.

PROOF. Suppose p& X —X. Let U and ‘U be, respectively, the open
and closed neighborhood systems of p in Y. Then the filter-base
®={XNU: UEU} is open (relative to X), is equivalent to the
closed (relative to X) filter-base {XNV=VED}, and is therefore
regular on X. As a filter-base on ¥, ® is stronger than U and hence
has no adherent point other than p in Y. It follows that ® has no
adherent point at all in X, a contradiction.

THEOREM 3. Any completely regular space satisfying (8) is compact
and therefore minimal regular.

Proor. Let X be completely regular and satisfy (8) and let Y be its
Stone-Cech compactification. The above lemma yields the desired
result.

THEOREM 4. Any minimal regular subspace of a regular space is
closed.

Proor. This is an immediate consequence of the lemma since the
subspace must satisfy (3).
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REMARK. It is easy to see that a subspace of a minimal regular
space which is both open and closed is itself minimal regular. The
example of the next section shows that a closed subspace of a minimal
regular space need not be minimal regular.

3. A minimal regular noncompact space. The example given here
is a slight modification of an unpublished one due to Richard Arens
of a regular space which is not completely regular. His example has
also been used by Hewitt [3] in constructing a regular space on which
every continuous real-valued function is constant.

Description of the space (Z, 3). Let J be the set of all integers, «’
the ordinals 2w, and Q' the ordinals <@ (the first uncountable one).
Equip each of these sets with the order topology and consider the
space J X' XU —{(n, w, Q):nEJ }, the relative product topology
being used. To obtain the space Y, make the following identifications
and use the quotient topology 3*: for even %, identify (n, w, y) and
(mn+1, w, y); for odd #, identify (n, x, Q) and (n+1, x, Q). We will
continue to use the symbols (n, x, ¥) for the points of Y, thus (z, w, ¥)
=(n+1, w, y) for even n. For n€J, let 0, = {(n, x, ¥): x <w, y<9}
and Z,=0,= {(n, x, ¥): (%, ¥) # (o, Q)}. Let p and ¢ be points not
in ¥ and topologize Z= {p}U{g} UY by letting an open base at p
be all sets of the form

Va(p) =U {Z::i> n} U Q.U {3}, n=1,2---,
and an open base at g be all sets of the form
Valg) = U{Z_ i >n} U Q.U {g}, n=1,2---,

which open bases at points of ¥ are those they had in 3*. Let the
resulting topology on Z be 3.

Properties of the space (Z, 3). 1. (Z, 3) is regular.

ProoF. It is easy to see that singletons are closed, and regularity
is clear except possibly at p and ¢. Regularity at p, say, follows from
[Varr() |- CVa(p).

We will say that a set SCZ gets into the n-corner if whenever
xo<w, ¥90<, there is a point (n, x, ¥) ©S for some x>x¢ and y> y,.

2. If the open set U gets into the n-corner, then there is an infinite
sequence {x,} of distinct finite ordinals such that (n, x;, Q) € T.

PRrOOF. If not, there is an xy <w such that if xo<x <w, (n, x, Q) ET
and hence there is a y,<Q such that (n, x, y) & U for y,<y. Since
{y,: xo<x <w} is countable, its least upper bound, ¥, is less than Q.
Therefore if xo <x <w and y,<y, then (x, x, y) €& U. Since U gets into
the n-corner, it must then be that (n, w, y) E U for some y>y,. But
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since U is open, there is an x, xo <x <w, such that (#, x, y) € U. This
contradiction establishes the property.

3. Let U, V, and W be open sets such that UCTCVCVCW.
Then if U gets into the n-corner, W gets into the (n—1)- and (n+1)-
corners.

Proor For 7 opD. (The proof for the case z even is similar.) Take
xo<w, ¥0 <. By property 2, there are infinitely many distinct x; such
that xo<x;<w and (n, x;, QET. Since (n+1, x;, Q) =(n, x; Q)
E€TUCW, W gets into the (n+1)-corner. Since (n, x;, Q) E V, there
exists, for each 7, a ¥;<Q such that if y>y,, then (n, x;, y) E V. Let
y' be the least upper bound of the set {¥o, y1, %5, - - - }. Then for any
v, ¥ <y<Q, (n, x;, ¥)EV for all x;; hence (n, w, ¥)=(n—1, w, y)
EVCW, and W gets into the (n—1)-corner.

4. If ® is a regular filter-base and, for some #, each set of ® gets
into the n-corner, then p and ¢ are adherent points of ®.

PRrOOF. Let NV be a neighborhood of p and B&®. There is an integer
k such that Q. C Vi(p) CN; let h=Fk—n. Since ® is regular, there are
2h+1 sets U;E® such that

Ur.CTU.CU,CU:C -+ CUny1= B

Since U, gets into the n-corner, k applications of property 3 shows
that B = U4 gets into the n+4h=Ek-corner; i.e., BN\Q;#0, whence
BNN#0, and p is an adherent point of ®. The case for ¢ is similar.

5. (Z, 9) is not completely regular and hence not compact.

ProoF. Let f be a bounded, real-valued continuous function on Z.
For some fixed # and each y<Q, let g(y) =f(n, w, ¥). Then g is con-
tinuous, and it is well-known (e.g., [4, p. 167, ex. Q]) that there is a
¥0<Q and a constant ¢ such that g(y) =c for y>v,. It follows that
each set of the regular filter-base { {pCZ: |f(p) —c| <e}:e>0} gets
into the n-corner. Since, by property 4, p and g are adherent points
of this filter-base, it is clear that f(p) =f(¢) =¢ and (Z, 3) is not com-
pletely regular.

In the proof of the following property we repeatedly use the ele-
mentary fact that if ® is a regular filter-base and CE®, then
e={CNB: BE®} is a regular filter-base equivalent to ®. We will
call € the C-section of ®.

6. (Z, 3) is minimal regular.

PRrooF. Let ® be a regular filter-base with unique adherent point 7.
We will show that ® converges to r; the property will then follow
from Theorem 2.

Case 1. r#p, q. Then some set CE B meets only a finite number of
Z,'s. Let @ be the C-section of ®; then there is an integer % such that
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each set of € is a subset of K=U{z,: | n| <k}. It follows from prop-
erty 4 that for each #, |n| Sk, there is a set D,E € which does not
get into the n-corner. Let D be a set of @ lying in N{D,: |n| <k};
then ordinals xo <w, yo < exist such that D does not meet the open
set W= {(n, X, ¥): x> %0, y>yo}. Hence D, the D-section of @, is a
filter-base equivalent to ®, and each of its sets lies in the compact
subspace K — W of Z. It is clear that D, and hence ®, must converge
to their unique adherent point .

Case 2. r=p. (The proof for the case r=g¢ is similar.) If & does not
converge to p, there is a neighborhood Vi(p) which contains no set
of ®. Since ¢ is not an adherent point of ®, there is an integer £ and
a set C of ® such that CN\Z,= for n <h. It follows from property
4 that for each n, h=n =<k, there is a set D, in the C-section C of B
which does not get into the n-corner. Let D be a set of € lying in
N{D.: h=n<k}; then ordinals x,<w and y,<® exist such that D
does not meet the set W= {(n, x, ¥Y):hSu=k, x>x,, y>yo}. The
D-section D of @ is a filter-base equivalent to ® and each of its sets
meets the compact set F=U{Z,:h <#un <k} — W. Hence
&={FNE: EED} is a filter-base stronger than ® and each of its
sets is contained in F. Since F is compact, §, and hence ®, must have
an adherent point z& F. Since 27 p, a contradiction results.

7. (Z, 3) has a closed subspace which is not minimal regular.

Proor. Let S= {(1, x, Q):x <w} . It is clear that S is a closed sub-
set of Z. But, with the relative topology, S is an infinite discrete
space, which is certainly not minimal regular.
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