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1. Introduction. If (P is a property of topologies, a space (X, 3) is

minimal (P if 3 has property (?, but no topology on X which is strictly

weaker ( = smaller) than 3 has (P. Such spaces have been investigated

for the case (P = Hausdorff [2; 5], a well-known result being that

while every compact space is minimal Hausdorff, the converse is not

true. We consider here the case (? — regular;1 other properties are dis-

cussed by one of the authors in a paper to appear.

Filter-bases on spaces will be used extensively (for definitions not

given here, see [l]). A filter-base is open (closed) if its elements are

open (closed) sets. A filter-base will be called regular if it is open and

is equivalent to a closed filter-base. The name is suggested by the fact

that the filter-base of open neighborhoods of a point of a regular space

is regular since it is equivalent to the filter-base of closed neighbor-

hoods of that point.

2. Characterizations of minimal regular spaces. We will be con-

cerned with spaces satisfying one or both of the following conditions:

ict) Every regular filter-base which has a unique adherent point is

convergent.

iß) Every regular filter-base has an adherent point.

Theorem 1. A regular space which satisfies (a) also satisfies iß).

Proof. Suppose (B is a regular filter-base on the regular space

(A, 3) and that 03 has no adherent point. Let 6 be a closed filter-base

equivalent to 03. Fix pEX and let Cu and V be the filter-bases of open

and closed neighborhoods of p, respectively. Since 3 is regular, "U and

V are equivalent. Then (R= {BVJU: BE<$>, UE'Vl} is an open filter-

base equivalent to the closed filter-base ¡CUF: CEQ, VEv} and is

therefore regular. It is clear that p is the unique adherent point of 01

and that (R does not converge to p. This denial of the hypothesis

establishes the theorem.

Theorem 2. In order that a regular space be minimal regular, it is

necessary and sufficient that it satisfy (a).

Proof. Suppose (A, 3) is regular and that 03 is a regular filter-base

having the unique adherent point p to which it does not converge.
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1 As used in this paper, the condition of regularity includes 7\ separation, i.e.,

singletons are closed.

454



MINIMAL REGULAR SPACES 455

For each xEX, let 11 (x) be the filter-base of 3-open neighborhoods

of x and define tU'(x)=tU(x) if x^p and ctí.'(p)= { UVJB: t7Gll(x),

BE<$>} • There is a topology 3' on X such that 1l'(x) is an open base at

x lor each xEX. It is clear that 3' is strictly weaker than 3 (there

is a UE1l(£) which contains no set of IL'ip) since (B does not converge

to p). Moreover, 3' is certainly regular at each xj^p, while regularity

at p follows readily from the fact that (B is equivalent to a closed

filter-base. Hence 3 is not minimal regular.

To establish the sufficiency of the condition, let (A, 3) be a regular

space satisfying (a) and let 3' be a regular topology on X which is

weaker than 3. For arbitrary xEX let 1l(x) and 1t'(x) be the open

neighborhood systems of x in the 3 and 3' topologies, respectively.

The filter-base 1l'(x) is 3'-regular and has x as its only adherent point.

Since 3' is weaker than 3, 1l'(x) is regular and has unique adherent

point x in (X, 3). By (a) 1l'(x) converges to x in (X, 3). Hence ^(x)

must be weaker than 1t'(x), and, since the reverse is true, it follows

that 3 and 3' are identical and that 3 is minimal regular.

Remark. The two previous results show that condition (ß) is

necessary in order that a regular space be minimal regular. Whether

it is sufficient is an open question. Theorem 3 below, however, throws

some light on the problem.

Lemma. If the subspace X of the regular space Y satisfies (ß), then X

is closed in Y.

Proof. Suppose pEX — X. Let CU and V be, respectively, the open

and closed neighborhood systems of p in F. Then the filter-base

(B= {Xr\U: i/G'U} is open (relative to X), is equivalent to the

closed (relative to X) filter-base {XC\V= VE*o}, and is therefore

regular on X. As a filter-base on F, (B is stronger than 11 and hence

has no adherent point other than p in F. It follows that (B has no

adherent point at all in X, a contradiction.

Theorem 3. Any completely regular space satisfying (ß) is compact

and therefore minimal regular.

Proof. Let X be completely regular and satisfy (ß) and let F be its

Stone-Cech compactification. The above lemma yields the desired

result.

Theorem 4. Any minimal regular subspace of a regular space is

closed.

Proof. This is an immediate consequence of the lemma since the

subspace must satisfy iß).
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Remark. It is easy to see that a subspace of a minimal regular

space which is both open and closed is itself minimal regular. The

example of the next section shows that a closed subspace of a minimal

regular space need not be minimal regular.

3. A minimal regular noncompact space. The example given here

is a slight modification of an unpublished one due to Richard Arens

of a regular space which is not completely regular. His example has

also been used by Hewitt [3] in constructing a regular space on which

every continuous real-valued function is constant.

Description of the space (Z, 3). Let J be the set of all integers, co'

the ordinals ^co, and ß' the ordinals ;gß (the first uncountable one).

Equip each of these sets with the order topology and consider the

space JXco'Xß' — {(n, co, Q):nEJ}, the relative product topology

being used. To obtain the space Y, make the following identifications

and use the quotient topology 3*: for even re, identify (re, eo, y) and

(re + 1, co, y); for odd re, identify (re, x, ß) and (re + 1, x, ß). We will

continue to use the symbols (re, x, y) for the points of Y, thus (w, co, y)

= (w + 1, co, y) for even re. For nEJ, let Qn= {in, x, y): x<co, y <ß)

and Znz=Qn= {in, x, y) : (x, y) 9e (co, ß)}. Let p and q be points not

in Y and topologize Z= {p} W {g} U F by letting an open base at p

be all sets of the form

V„ip) =U {Zi-.i> n}VJQnVJ {p}, re = I, 2, ■ ■ ■ ,

and an open base at q be all sets of the form

Vniq) = U {Z-i-.i>n} UÖ-»U{?}, »=1,2,...,

which open bases at points of Y are those they had in 3*. Let the

resulting topology on Z be 3.

Properties of the space iZ, 3). 1. (Z, 3) is regular.

Proof. It is easy to see that singletons are closed, and regularity

is clear except possibly at p and q. Regularity at p, say, follows from

[Vn+liP)]-EVniP).
We will say that a set SEZ gets into the n-corner if whenever

Xo<co, yo<&, there is a point (re, x, y)ES for some x>Xo and y>yo.

2. If the open set U gets into the w-corner, then there is an infinite

sequence {x;} of distinct finite ordinals such that (re, xt-, Q)EU.

Proof. If not, there is an x0 <co such that if x0 <x <co, (re, x, ß) €£ U

and hence there is a yx<£¡ such that (re, x, y)EU for yx<y. Since

{yx: Xo<x<coJ is countable, its least upper bound, y0, is less than ß.

Therefore if x0 <x <co and y0 <y, then (re, x, y) ££ U. Since U gets into

the «-corner, it must then be that (re, w, y)EU for some y>yo. But
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since U is open, there is an x, xo<x<«, such that (n, x, y)EU. This

contradiction establishes the property.

3. Let U, V, and W be open sets such that UEUEVEVEW.

Then if U gets into the w-corner, W gets into the (n — 1)- and (w + 1)-

corners.

Proof for n odd. (The proof for the case n even is similar.) Take

xo <u, y0 <ß. By property 2, there are infinitely many distinct xt- such

that xo<xt<co and (n, Xt, ti)EU. Since (» + 1, Xt, ü) = (n, x,-, fl)

EUEW, W gets into the (w + l)-corner. Since (n, x<, Q)EV, there

exists, for each i, a y,-<ß such that if y>yu then («, xit y)E V. Let

y' be the least upper bound of the set {yo, yi, y%, • • • }■ Then for any

y, y'<y<&, (n, x¿, y)EV for all x¿; hence (n, co, y) = (« — 1, co, y)

GFCiF, and IF gets into the (n — l)-corner.

4. If (B is a regular filter-base and, for some n, each set of (B gets

into the »-corner, then p and q are adherent points of (B.

Proof. Let A be a neighborhood of p and BE<$>- There is an integer

k such that QhE Vk(p) EN; let h = k — n. Since (B is regular, there are

2A + 1 sets i7,G(B such that

Ux E Vx C U, C F, C • • • C PsA+i = B.

Since Z7i gets into the w-corner, h applications of property 3 shows

that B= U2n+x gets into the w+Ä = &-corner; i.e., Br\Qk^0, whence

BC^N^O, and p is an adherent point of (B. The case for q is similar.

5. (Z, 3) is not completely regular and hence not compact.

Proof. Let/ be a bounded, real-valued continuous function on Z.

For some fixed n and each y <fí, let g(y) =/(«, co, y). Then g is con-

tinuous, and it is well-known (e.g., [4, p. 167, ex. Q]) that there is a

yo<Œ and a constant c such that g(y) = c for y>yo- It follows that

each set of the regular filter-base { {pEZ: \f(p)—c\ <e} : e>0} gets

into the w-corner. Since, by property 4, p and q are adherent points

of this filter-base, it is clear that/(£) =/(g) =c and (Z, 3) is not com-

pletely regular.

In the proof of the following property we repeatedly use the ele-

mentary fact that if (B is a regular filter-base and CG<B, then

6= {Cr\B: PG<b} is a regular filter-base equivalent to <B. We will

call e the C-section of (B.

6. (Z, 3) is minimal regular.

Proof. Let (B be a regular filter-base with unique adherent point r.

We will show that (B converges to r; the property will then follow

from Theorem 2.

Case 1. r^p, q. Then some set CE<S> meets only a finite number of

Zn's. Let 6 be the C-section of (B; then there is an integer k such that



458 M. P. BERRI AND R. H. SORGENFREY

each set of Q is a subset of A = U{z„: \n\ ^k}. It follows from prop-

erty 4 that for each re, \n\ ^k, there is a set DnEG which does not

get into the re-corner. Let D be a set of 6 lying in f) {Dn: \n\ ¿j&} ;

then ordinals Xo<co, y0<ß exist such that D does not meet the open

set W= {in, x, y):x>x0, y>yo}- Hence 2D, the D-section of 6, is a

filter-base equivalent to 03, and each of its sets lies in the compact

subspace A — W of Z. It is clear that 3D, and hence 03, must converge

to their unique adherent point r.

Case 2. r = p. (The proof for the case r = q is similar.) If 03 does not

converge to p, there is a neighborhood Ft(p) which contains no set

of 03. Since q is not an adherent point of 03, there is an integer h and

a set C of 03 such that CC\Zn = 0 for n<h. It follows from property

4 that for each re, h^n^k, there is a set Dn in the C-section G of 03

which does not get into the re-corner. Let D be a set of G lying in

f\{Dn: h^n^k} ; then ordinals x0<co and y0<ß exist such that D

does not meet the set W= {in, x, y):h^n^k, x>Xo, y>yo}- The

.D-section 2D of Q is a filter-base equivalent to 03 and each of its sets

meets the compact set F = (j{Zn: h ^ n ^ k} — W. Hence

S= {FC\E: EE£>} is a filter-base stronger than 03 and each of its

sets is contained in F. Since F is compact, 8, and hence 03, must have

an adherent point zEF. Since z^p, a contradiction results.

7.  (Z, 3) has a closed subspace which is not minimal regular.

Proof. Let S= {(1, x, ß): x<co}. It is clear that 5 is a closed sub-

set of Z. But, with the relative topology, S is an infinite discrete

space, which is certainly not minimal regular.
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