A class of negative-definite functions
HTML articles powered by AMS MathViewer
- by C. S. Herz
- Proc. Amer. Math. Soc. 14 (1963), 670-676
- DOI: https://doi.org/10.1090/S0002-9939-1963-0158251-7
- PDF | Request permission
References
- S. Banach, Théorie des opérations linéaires, Monogr. Mat., Vol. I, Warsaw, 1932.
- S. Bochner, Stable laws of probability and completely monotone functions, Duke Math. J. 3 (1937), no. 4, 726–728. MR 1546026, DOI 10.1215/S0012-7094-37-00360-0
- T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Springer-Verlag, Berlin-New York, 1974 (German). Berichtigter Reprint. MR 0344997
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4 C. S. Herz, Negative definite functions (to appear). P. Lévy, Théorie de l’addition des variables aléatoires, Gauthier-Villars, Paris, 1937.
- I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), no. 3, 522–536. MR 1501980, DOI 10.1090/S0002-9947-1938-1501980-0
Bibliographic Information
- © Copyright 1963 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 14 (1963), 670-676
- MSC: Primary 46.90; Secondary 42.54
- DOI: https://doi.org/10.1090/S0002-9939-1963-0158251-7
- MathSciNet review: 0158251