A note on the representation of $\alpha$-complete Boolean algebras
HTML articles powered by AMS MathViewer
- by Carol R. Karp
- Proc. Amer. Math. Soc. 14 (1963), 705-707
- DOI: https://doi.org/10.1090/S0002-9939-1963-0153607-0
- PDF | Request permission
References
- C. C. Chang, On the representation of $\alpha$-complete Boolean algebras, Trans. Amer. Math. Soc. 85 (1957), 208–218. MR 86792, DOI 10.1090/S0002-9947-1957-0086792-1
- R. S. Pierce, Distributivity and the normal completion of Boolean algebras, Pacific J. Math. 8 (1958), 133–140. MR 96604, DOI 10.2140/pjm.1958.8.133
- R. S. Pierce, A generalization of atomic Boolean algebras, Pacific J. Math. 9 (1959), 175–182. MR 106861, DOI 10.2140/pjm.1959.9.175
- Dana Scott, The independence of certain distributive laws in Boolean algebras, Trans. Amer. Math. Soc. 84 (1957), 258–261. MR 86048, DOI 10.1090/S0002-9947-1957-0086048-7
- Roman Sikorski, Boolean algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 25, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0126393
- Edgar C. Smith Jr., A distributivity condition for Boolean algebras, Ann. of Math. (2) 64 (1956), 551–561. MR 86047, DOI 10.2307/1969602
Bibliographic Information
- © Copyright 1963 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 14 (1963), 705-707
- MSC: Primary 02.42; Secondary 06.00
- DOI: https://doi.org/10.1090/S0002-9939-1963-0153607-0
- MathSciNet review: 0153607