A NOTE ON ABSOLUTE $G_δ$-SPACES

M. REICHAW-REICHBACH

A set X, which is a $G_δ$ in a compact space is called an absolute $G_δ$-space (simply-absolute $G_δ$) or a topologically complete space. It was noted by Knaster that there exist two classes \mathfrak{A} and \mathfrak{B} of such spaces, where by definition:

$X \in \mathfrak{A}$ if X is an absolute $G_δ$ and there exists a homeomorphism $h: X \rightarrow Y$ of X into a compact space Y, such that the image $h(X)$ of X can be written in the form:

$\bigcap_{i=1}^{\infty} G_i$ with $\dim Fr(G_i) < \dim X$ and G_i open in Y,

$X \in \mathfrak{B}$ if X is an absolute $G_δ$ and $X \in \mathfrak{B}$. Knaster also showed that the set $N \times D$, where N is the set of irrational numbers of the interval $D = [0, 1]$, belongs to \mathfrak{B}. In answer to one of his questions, it was proved by Lelek that every set of the form $N \times Z$, where Z is an arbitrary finite-dimensional compact set, belongs to \mathfrak{B}. Lelek posed also the following:

PROBLEM. Does there exist for every metric, separable and topologically complete, finite-dimensional space $X \in \mathfrak{B}$, with $\dim X > 0$, a compact space Z, with $\dim Z > 0$ such that the set $N \times Z$ has a topological image in X?

The aim of this paper is to give a negative answer to this problem. This will be done by the following:

Example of a set $X \in \mathfrak{B}$, with $\dim X = 1$, which does not contain a topological image of any set of the form $N \times Z$ with Z compact and $\dim Z > 0$.

Let namely D_n be the closed unit interval joining the points $p_n = (1/n, 0)$ and $q_n = (1/n, 1)$ in the (x, y)-plane, $n = 1, 2, \ldots$ (i.e., $D_n = \{ (x, y); x = 1/n, 0 \leq y \leq 1 \}$) and let $p = (0, 0)$ and $q = (0, 1)$.

We put $X = \bigcup_{n=1}^{\infty} D_n \cup \{ \bar{p} \} \cup \{ q \}$. Evidently $\dim X = 1$, and it suffices to show that the set X has the following properties:

Received by the editors March 19, 1962 and, in revised form, July 3, 1962.

1 Only metric, separable spaces are considered.
2 See [1, p. 264].
3 $\dim X$ denotes the dimension of X; $Fr(X)$ is the boundary of X.
4 See [1, pp. 263–264].
5 See [3, p. 34].
6 See [3, p. 34]. The author learned recently that this problem has also been solved, in an entirely different way, by A. Lelek (unpublished to date).
A NOTE ON ABSOLUTE G Spaces

(a) X is an absolute G,7

(b) $X \subseteq \mathcal{F}$ and

c) given a set T of the form $T = N \times Z$ with Z compact and $\dim Z > 0$, there does not exist a homeomorphism of T into X.

To show (a), note that the closure \overline{X} of X in the (x, y)-plane equals:
$$\overline{X} = \bigcup_{n=1}^{\infty} D_n \cup D_0,$$
where $D_0 = \{(x, y) : x = 0, 0 \leq y \leq 1\}$ and \overline{X} is a compact space. It differs from X by the open interval $D_0 - \{(p)^J(q)\}$, which is an F in X. Therefore (a) holds.

To show (b), we shall prove that the assumption $X \subseteq \mathcal{F}$ leads to a contradiction.

Suppose, that $X \subseteq \mathcal{F}$. Then:

1) There exists a homeomorphism $h : X \to Y$ of X into a compact space Y, such that $\dim \{Y - h(X)\} < \dim X = 1$.8

Since the intervals D_n are disjoint, the sets $h(D_n); n = 1, 2, \ldots$ form a sequence of disjoint continua (even arcs) in the compact space Y. Thus, there exists a subsequence $\{k\}$ of natural numbers, such that the continua $h(D_k)$ converge to a continuum $E = \lim_{k \to \infty} h(D_k)$.9

Now, it is easily seen that

$$(b_1) \quad \text{the diameter } \delta(E) > 0.$$

Indeed, if E were to reduce to a point \hat{p}, there would be, for the endpoints p_k and q_k of D_k: $p_k \to \hat{p}$, $h(p_k) \to \hat{p} = h(p)$ and $q_k \to \hat{q}$, $h(q_k) \to \hat{q} = h(q)$ which is impossible, since h is a one-to-one mapping.

We also have

$$(b_2) \quad E \cap h(D_n) = 0 \quad \text{for every } n = 1, 2, \ldots$$

since otherwise there would exist a number n_0, a point $r \in D_{n_0}$, a subsequence $\{j\}$ of $\{k\}$ and points $r_j \in D_j$ such that $\lim_{j \to \infty} r_j = r$ which is impossible by the definition of the intervals D_n. (No interval D_n contains a limit point of a sequence of points belonging to intervals D_n for $n \neq n_0$.)

By (b$_1$), E is a continuum containing more than one point and therefore $\dim E \geq 1$. But by (b$_2$) we have $E \subseteq Y - h(\bigcup_{n=1}^{\infty} D_n)$. Hence by $h(X) = h(\bigcup_{n=1}^{\infty} D_n) \cup (h(p)) \cup (h(q))$ we have $\dim \{Y - h(X)\} \geq 1$ which contradicts (1).

Thus (b) holds. It remains to show (c). For this purpose suppose, to the contrary, that there would exist a compact set Z with $\dim Z > 0$

7 It is easily seen that X is also an absolute F, i.e. an F in a compact space.

8 This is a trivial consequence of [3, p. 31, Theorem 1]. See also the remark at the end of the present paper.

9 This follows from [2, p. 110, Theorem 4]. It can also be derived from [5, p. 11, (9, 11)].
such that the set $T = N \times Z$ has a topological image $f(T)$ in X. Since \(\dim Z > 0 \), the compact set Z contains a continuum C which does not reduce to one point.\(^{10}\) Therefore the set $T = N \times Z$ would contain the set $N \times C$ which consists of 2^{\aleph_0} disjoint continua C_i and we could write $N \times C = \bigcup_{i \in \mathbb{N}} C_i$. The image $f(C_i)$ of every C_i would be a continuum contained in X.\(^{11}\) But X is a union of a denumerable sequence of closed sets. Hence, by a theorem of Sierpinski\(^{12}\) the set $f(C_i)$ has to be contained in one and only one, interval $D_n = D_{n(t)}$ $n = 1, 2, \ldots$. Thus $f(C_i)$ would be, for every ξ, a closed interval contained in an interval $D_n(\xi)$. Now for $\xi' \neq \xi''$ the intervals $f(C_{\xi'})$ and $f(C_{\xi''})$ would be disjoint and therefore, there would exist a family of power 2^{\aleph_0} of disjoint intervals contained in the set X, which is impossible (since X is a union of a countable family of intervals and two points). Therefore (c) also holds.

Remark. As noted in footnote 8, the proof of (1) is a consequence of Theorem 1, p. 31 of \[3\]. This theorem concerns finite-dimensional spaces. Now it is easily seen that (1) follows also from the fact that

(2) If $X \in \mathfrak{A}$, then there exists a compact space Y and a homeomorphism $h: X \rightarrow Y$ such that $h(X) = \bigcap_{i=1}^{\infty} G_i$ where G_i are open in Y and $Y - h(X) = \bigcup_{i=1}^{\infty} \text{Fr}(G_i)$ with $\dim \text{Fr}(G_i) < \dim X$ $i = 1, 2, \ldots$.

Indeed, if $X \in \mathfrak{A}$ then X can be represented in the form (1^o). Taking the closure $\text{cl}(h(X))$ of $h(X)$ in Y and denoting this “new” set $\text{cl}(h(X))$ by Y and the “new” sets $G_i \cap \text{cl}(h(X))$ by G_i, it is easy to verify that (2) holds without any assumption of finite-dimensionality of X.

References

Technion, Israel Institute of Technology, Haifa

\(^{10}\) See [2, p. 130]; also [4, p. 278].

\(^{11}\) Evidently $f(C_i)$ contains more than one point.

\(^{12}\) See [2, p. 113].

\(^{18}\) The proof is analogous to that of the necessity of Theorem 1, p. 31 of [3].