New proof of the generalized Chinese Remainder Theorem
HTML articles powered by AMS MathViewer
- by Aviezri S. Fraenkel
- Proc. Amer. Math. Soc. 14 (1963), 790-791
- DOI: https://doi.org/10.1090/S0002-9939-1963-0154841-6
- PDF | Request permission
References
- D. G. Cantor, G. Estrin, A. S. Fraenkel, and R. Turn, A very high-speed digital number sieve, Math. Comp. 16 (1962), 141–154. MR 146990, DOI 10.1090/S0025-5718-1962-0146990-0 L. E. Dickson, History of the theory of numbers, Vol. 2, Chelsea, New York, 1952, pp. 57-64.
- D. H. Lehmer, The sieve problem for all-purpose computers, Math. Tables Aids Comput. 7 (1953), 6–14. MR 52876, DOI 10.1090/S0025-5718-1953-0052876-7
- William Judson LeVeque, Topics in number theory. Vols. 1 and 2, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1956. MR 0080682
- Henry B. Mann, On modular computation, Math. Comput. 15 (1961), 190–192. MR 0120187, DOI 10.1090/S0025-5718-1961-0120187-1
Bibliographic Information
- © Copyright 1963 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 14 (1963), 790-791
- MSC: Primary 10.06; Secondary 10.09
- DOI: https://doi.org/10.1090/S0002-9939-1963-0154841-6
- MathSciNet review: 0154841