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J. N. Younglove recently has proved [3] that a normal, complete

Moore space is metrizable, provided that the boundary of each do-

main is screenable. It is established in the first theorem of this paper

that the same conclusion follows without the requirement of complete-

ness on the space. The second theorem establishes a relation between

separability and pointwise paracompactness in complete Moore

spaces.

The statement that the space 5 is a Moore space means there is a

sequence of collections of regions in 5 satisfying Axiom 0 and Axiom

13 of [2]. A Moore space is complete if and only if there is a sequence

of collections of regions in the space satisfying all of Axiom 1 of [2].

The statement that the point set M is screenable means that if G

is an open covering of the space S, there exists a sequence 77i, 772,

773, • • • of collections of mutually exclusive open sets such that

ZK* ïs a refinement of G which covers M.

The statement that the point set M is pointwise paracompact

means that if G is an open covering of the space S, there is an open

refinement 77 of G such that 77 covers M and no point of S belongs to

infinitely many elements of 77.

Theorem 1. A normal Moore space is metrizable if and only if the

boundary of each domain is screenable.1

Proof. Suppose S is a normal Moore space and 77 is a covering of

S. Denote by 77' a collection of mutually exclusive domains such

that 77'* is dense in 5 and 77' refines 77. But 77'* is a domain so

5 — 77'* is screenable. Then there exists a sequence 77i, 772, 773, • • •

such that each 77¿ is a collection of mutually exclusive domains, each

of which is a subset of some element of 77, and Z^< covers 5—77'*.

In this case, 77', Hi, H2, Hz, • ■ • screens 5 with respect to 77 and

thus, 5 is a screenable space. Bing has proved [l] that each normal,

screenable space is metrizable.

Since Bing has proved also [l ] that each metrizable Moore space

is screenable, it follows that the boundary of each domain of a

metrizable Moore space is screenable.
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1 It is my understanding that E. E. Grace has an independent but similar proof

of this theorem.
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Theorem 2. 4 separable, complete Moore space is metrizable if and

only if the boundary of each domain is pointwise paracompact.

Proof. Suppose S is a separable, complete Moore space. Young-

love has proved [4] that there exists a metrizable subspace S' which

is dense in S. The point set h is a domain in S' if and only if there

exists a domain g in 5 such that h is g -S'.

Suppose G is an open covering of 5 and 77 is the collection to which

h belongs if and only if there is an element g of G such that h is g -S'.

In S', 77 is an open covering of S'. A theorem proved by Bing [l]

establishes that there is a sequence 77/, 772', 773', • • • of discrete

(in S') collections of open sets such that the sum of the collections of

the sequence is a refinement of 77 which covers S'. For each element

h! of each 77/, denote by h some domain in 5 such that h ■ S' is h'.

If 77i is the collection to which the domain d belongs if and only if

there is a domain h' of 77/ such that d is h, then 77¿ is a collection of

mutually exclusive domains. For suppose each of h and hi belong to

Hi and h intersects h\. Then h-hi is open and h -S' intersects hi'S'.

This means that 77/ is not a discrete collection of domains in 5' and

a contradiction is reached.

Since 5 is separable, each 77f is a countable collection. Since

5— Hü* is pointwise paracompact, there is a refinement G' of G

covering 5— Hü* such that no point of 5 belongs to infinitely many

of the elements of G'. But 5 is separable, so G' must be countable.

It is clear that if 77' is the collection to which the domain d belongs

if and only if d is a domain of G' or of some 77,-, then 77' is countable.

Thus, 5 is completely separable, and therefore metrizable.

If the space is metrizable, it is paracompact. In this case, it is

obvious that the boundary of each domain is pointwise paracompact.
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