SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually
elegant and polished character, for which there is normally no other outlet.

A SIMPLE EXAMPLE OF A TRANSCENDENTAL ENTIRE
FUNCTION THAT TOGETHER WITH ALL ITS
DERIVATIVES ASSUMES ALGEBRAIC VALUES
AT ALL ALGEBRAIC POINTS

DAIHACHIRO SATO¹

Let \(\{z_i\} = \{z_1, z_2, z_3, \cdots \} \) be an enumeration of all algebraic numbers [1]. Construct a sequence \(\{\xi_j\} = \{\xi_1, \xi_2, \xi_3, \cdots \} \)
= \(\{z_1, z_1, z_2, z_1, z_2, z_3, z_1, \cdots \} \) so that all of the algebraic numbers appear an infinite number of times in \(\{\xi_j\} \). Then, for algebraic numbers \(a_n \) with \(0 < |a_n| < (n! \cdot \prod_{j=1}^{\infty} (1 + |\xi_j|))^{-1} \), the function \(f(z) = \sum_{n=0}^{\infty} a_n \cdot \prod_{j=1}^{n} (z - \xi_j) \) is an entire function having the said property. Since \(|z - \xi_j| \leq 1 + |\xi_j| \) for \(|z| \leq 1 \) and \(|z - \xi_j| \leq |z| \cdot (1 + |\xi_j/z|) \)
\(|z| \cdot (1 + |\xi_j|) \) for \(|z| > 1 \), the series for \(f(z) \) converges absolutely and uniformly in \(|z| \leq R < \infty \) and \(|f(z)| \leq \max \{e, 8^{1/2}\} \). Since \(f^{(m)}(\xi_j) \)
is a polynomial of \(\xi_j \) with algebraic coefficients \(a_n \) and \(\{\xi_j\} \) contains all algebraic numbers infinitely many times, \(f^{(m)}(\xi) \) must be an algebraic
number for any algebraic number \(\xi \).

If we ask the general question: For what sets, \(S \), of complex numbers do there exist transcendental entire functions which, together
with all their derivatives, map \(S \) into \(S' \)?, we see immediately that the above construction can be applied to any dense denumerable set,
or to any denumerable ring which has 0 as a limit point, such as the
ring of rationals. A similar method can be applied to discrete infinite
rings such as the ring of integers. The question for nondenumerable
nonclosed rings \(S \) remains open.

REFERENCES

1. J. W. Green, Functions which assume rational values at rational points, Duke
2. Th. Schneider, Ein Satz über ganzzahlige Funktionen als Prinzip für Transzen-

UNIVERSITY OF SASKATCHEWAN, REGINA CAMPUS

¹ This is a part of the author’s dissertation for Ph.D. under the title Integer valued
entire functions submitted to the University of California, Los Angeles. Work on this
paper was done while the author received support from the National Science Founda-
tion. The author is indebted to Professor E. G. Straus for his valuable guidance during
its preparation.

996