A WILD SPHERE WHICH CAN BE PIERCED AT EACH
POINT BY A STRAIGHT LINE SEGMENT

M. K. FORT, JR. 1

In this note we describe a wild 2-sphere \(S \) in \(E^3 \) which can be pierced at each point by a straight line segment. The existence of such a wild sphere answers the following question which was raised by R. H. Bing in his address Embedding surfaces in 3-manifolds at the 1962 International Congress of Mathematicians in Stockholm:

Is a 2-sphere in \(E^3 \) tame if it can be pierced at each point by a straight line interval?

In order to make the description of \(S \) as concise as possible, we make use of the terminology and notation of [2], the author's modification of Bing's well-known "Dog Bone Decomposition" (see [1]). We let \(G \) be the decomposition space defined in [2], and let \(A_0 \) be the union of the nondegenerate elements of \(G \). It is possible to carry out the construction of \(A_0 \) in such a way that the endpoints of the components of \(A_0 \) lie in two parallel planes, and we assume that this is the case. We can represent \(A_0 = \bigcap_{n=0}^{\infty} B_n \), where each set \(B_n \) is the union of \(2^n \) admissible polyhedra (see [2, p. 502, Figure 1]) \(P_1^n, P_2^n, \ldots, P_{2^n} \). Now, if (in the notation of [2]) \(P_j^n \) is represented as \(L \cup M \cup R \), we define \(Q_j^n \) to be (basic parallelepiped of \(L \) \(\cup M \) \(\cup \) (basic parallelepiped of \(R \)). We now define \(S \) to be the boundary of

\[
\bigcup_{n=0}^{\infty} \bigcup_{j=1}^{2^n} Q_j^n.
\]

It is easy to see that \(S \) is a "horned" 2-sphere and hence is wildly imbedded in \(E^3 \). \(A_0 \) is contained in the union of \(S \) and the bounded component of \(E^3 - S \), and for each component \(C \) of \(A_0 \) the set \(C \cap S \) consists of the endpoints of \(C \).

If \(p \in A_0 \cap S \), then we can pierce \(S \) at \(p \) by extending the component \(C \) of \(A_0 \) which contains \(p \). On the other hand, if \(p \in S - A_0 \), then \(S \) is locally polyhedral at \(p \) and can certainly be pierced by a line segment at \(p \).

In view of the above example, R. H. Bing has raised the following two questions:

(1) Is a topological 2-sphere \(S \) in \(E^3 \) tame if corresponding to each point \(p \in S \) there are Euclidean (round) spheres \(\sigma_1 \) and \(\sigma_2 \) containing \(p \) such that \(\sigma_1 - p \) and \(\sigma_2 - p \) lie on opposite sides of \(S \)?

Received by the editors September 8, 1962.

1 This work was supported by NSF Grant G23790.
(2) Is a topological 2-sphere \(S \) in \(E^3 \) tame if corresponding to each point \(p \in S \) there are cones \(\gamma_1 \) and \(\gamma_2 \), each with vertex at \(p \), such that \(\gamma_1 - p \) and \(\gamma_2 - p \) lie on opposite sides of \(S \)?

Bibliography

1. R. H. Bing, A decomposition of \(E^3 \) into points and tame arcs such that the decomposition space is topologically different from \(E^3 \), Ann. of Math. (2) 65 (1957), 484–500.

University of Georgia

CORRECTION TO “A CHARACTERIZATION OF QF-3 ALGEBRAS”

HIROYUKI TACHIKAWA

J. P. Jans is kind enough to inform me a gap of Necessity proof in my paper appearing in these Proceedings, 13 (1962), 701–703. In this note I shall report Theorem 2 in the paper is however valid by a slight alteration of the proof. In p. 702, the argument between line 9 and line 18 should be replaced by the following: Let \(e_\lambda \) be a primitive idempotent of \(A \) such that \(l(N)e_\lambda \neq 0 \). Then there exists an element \(x \in L \) such that \(l(N)e_\lambda x \neq 0 \) for \(L \) is faithful. Denote \(x \) by \(\sum_{\alpha \in \Lambda} a_\alpha e_\alpha + a_\lambda e_\lambda \), \(a_\alpha, a_\lambda \in A \). Since \(e_\lambda (\sum_{\alpha \in \Lambda} a_\alpha e_\alpha) \subseteq N \), \(l(N)e_\lambda x = l(N)e_\lambda a_\lambda e_\lambda \) and we have \(l(N)e_\lambda L e_\lambda \neq 0 \). Here, suppose \(L e_\lambda \neq A e_\lambda \).

Then \(L e_\lambda \subseteq N e_\lambda \) for \(N e_\lambda \) is the unique maximal left ideal of \(A e_\lambda \) and it follows \(l(N)e_\lambda L e_\lambda \subseteq l(N)N = 0 \). But this is a contradiction. Thus we obtain \(L e_\lambda = A e_\lambda \). Now, let \(\theta \) be the epimorphism: \(L \rightarrow L e_\lambda (= A e_\lambda) \), defined by \(\theta(x) = xe_\lambda \) for all \(x \in L \). Since \(L e_\lambda \) is projective, we have a direct sum decomposition of \(L: L_\lambda \oplus L'_\lambda \), where \(L_\lambda \cong A e_\lambda \). Then as \(\text{Hom}(L, K) \) is monomorphic to \(P \) and \(\text{Hom}(A e_\lambda, K) \) is injective, \(\text{Hom}(A e_\lambda, K) \) is isomorphic to a direct summand of \(P \). Thus if we denote by \(\Lambda \) the set of all indices \(\lambda \) such that \(l(N)e_\lambda \neq 0 \), \(\text{Hom}(\sum_{\lambda \in \Lambda} A e_\lambda, K) \) is projective.