On the generalized overrelaxation method for operation equations
HTML articles powered by AMS MathViewer
- by W. V. Petryshyn
- Proc. Amer. Math. Soc. 14 (1963), 917-924
- DOI: https://doi.org/10.1090/S0002-9939-1963-0169402-2
- PDF | Request permission
References
- Julius Albrecht, Fehlerabschätzungen bei Relaxationsverfahren zur numerischen Auflösung linearer Gleichungssysteme, Numer. Math. 3 (1961), 188–201 (German). MR 146957, DOI 10.1007/BF01386019
- R. J. Arms, L. D. Gates, and B. Zondek, A method of block iteration, J. Soc. Indust. Appl. Math. 4 (1956), 220–229. MR 119405
- George E. Forsythe and Wolfgang R. Wasow, Finite-difference methods for partial differential equations, Applied Mathematics Series, John Wiley & Sons, Inc., New York-London, 1960. MR 0130124
- Stanley P. Frankel, Convergence rates of iterative treatments of partial differential equations, Math. Tables Aids Comput. 4 (1950), 65–75. MR 46149, DOI 10.1090/S0025-5718-1950-0046149-3 B. Friedman, The iterative solution of elliptic difference equations, AEC Research and Development Report NYO-7698, New York University, New York, 1957.
- Alston S. Householder, On the convergence of matrix iterations, J. Assoc. Comput. Mach. 3 (1956), 314–324. MR 82185, DOI 10.1145/320843.320851 W. Kahan, The rate of convergence of the extrapolated Gauss-Seidel iterations (abstract), J. Assoc. Comput. Mach. 4 (1957), 521-522.
- Herbert B. Keller, On some iterative methods for solving elliptic difference equations, Quart. Appl. Math. 16 (1958), 209–226. MR 117893, DOI 10.1090/S0033-569X-1958-0117893-4
- S. G. Kreĭn and O. I. Prozorovskaya, An analogue of Seidel’s method for operator equations, Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal. 5 (1957), 35–38 (Russian). MR 0095579
- W. V. Petryshyn, The generalized overrelaxation method for the approximate solution of operator equations in Hilbert space, J. Soc. Indust. Appl. Math. 10 (1962), 675–690. MR 165723
- Samuel Schechter, Relaxation methods for linear equations, Comm. Pure Appl. Math. 12 (1959), 313–335. MR 107361, DOI 10.1002/cpa.3160120208
- Richard S. Varga, A comparison of the successive overrelaxation method and semi-iterative methods using Chebyshev polynomials, J. Soc. Indust. Appl. Math. 5 (1957), 39–46. MR 90129
- David Young, Iterative methods for solving partial difference equations of elliptic type, Trans. Amer. Math. Soc. 76 (1954), 92–111. MR 59635, DOI 10.1090/S0002-9947-1954-0059635-7
Bibliographic Information
- © Copyright 1963 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 14 (1963), 917-924
- MSC: Primary 65.10
- DOI: https://doi.org/10.1090/S0002-9939-1963-0169402-2
- MathSciNet review: 0169402