Some relationships between locally superadditive functions and convex functions
HTML articles powered by AMS MathViewer
- by A. M. Bruckner
- Proc. Amer. Math. Soc. 15 (1964), 61-65
- DOI: https://doi.org/10.1090/S0002-9939-1964-0156924-4
- PDF | Request permission
References
- E. F. Bechenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439–460. MR 24479, DOI 10.1090/S0002-9904-1948-08994-7
- Andrew Bruckner, Minimal superadditive extensions of superadditive functions, Pacific J. Math. 10 (1960), 1155–1162. MR 122943, DOI 10.2140/pjm.1960.10.1155
- A. M. Bruckner, Tests for superadditivity of functions, Proc. Amer. Math. Soc. 13 (1962), 126–130. MR 133411, DOI 10.1090/S0002-9939-1962-0133411-9 A. Denjoy, Sur une propriété des fonctions dérivées, Enseignement Math. 18 (1916), 320-328.
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373 R. G. Laatsch, Subadditive functions of one real variable, Doctoral dissertation, Oklahoma State University, Stillwater, Oklahoma, 1962.
- R. A. Rosenbaum, Sub-additive functions, Duke Math. J. 17 (1950), 227–247. MR 36796, DOI 10.1215/S0012-7094-50-01721-2
Bibliographic Information
- © Copyright 1964 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 15 (1964), 61-65
- MSC: Primary 26.52
- DOI: https://doi.org/10.1090/S0002-9939-1964-0156924-4
- MathSciNet review: 0156924