In this note we present two spaces X and Y all of whose homotopy groups are isomorphic, but whose homotopy groups with coefficients are not isomorphic for a certain coefficient group.\footnote{We have been informed that such an example was known to Eckmann and Hilton.} This example depends on the fact that the universal coefficient sequence \cite{2}, which relates the ordinary homotopy groups to those with coefficients, does not split. The spaces X and Y will be 1-connected, CW-complexes and the coefficient group will be \mathbb{Z}_m, the integers modulo m.

We adopt the following notation: $M(G, p)$ denotes a Moore complex of type (G, p) (i.e., a space with a single nonvanishing homology group G in dimension p) and $K(G, p)$ denotes an Eilenberg-MacLane complex of type (G, p) (i.e., a space with a single nonvanishing homotopy group G in dimension p). Recall that $\pi_r(G; A)$, the rth homotopy group of the space A with coefficients in the group G, is the group of homotopy classes of base point preserving maps from $M(G, r)$ into A. If Z is the group of integers, then $\pi_r(Z; A) = \pi_r(A)$, the rth homotopy group of A. Finally we recall the universal coefficient theorem \cite{2} which asserts the exactness of the following sequence

$$0 \to \text{Ext}(G, \pi_{r+1}(A)) \to \pi_r(G; A) \to \text{Hom}(G, \pi_r(A)) \to 0.\tag{1}$$

Now let $X = M(\mathbb{Z}_n, r)$ and let d be the greatest common divisor of m and n. We shall always assume that d is even, that 8 does not divide mn, and that r is an integer >2. Under these conditions Barratt \cite{1} has shown that $\pi_r(\mathbb{Z}_m; X) \approx \mathbb{Z}_{2d}$. In addition, it is well known that $\pi_{r+1}(X) \approx \mathbb{Z}_n \otimes \mathbb{Z}_2 = \mathbb{Z}_2$. Now let X be the space obtained from X by attaching cells to kill all homotopy groups in dimensions $\geq r+2$. Thus

$$\begin{align*}
\pi_i(X) &= 0 \text{ for all } i \leq r - 1 \text{ and } \geq r + 2, \\
\pi_r(X) &= \mathbb{Z}_n \text{ and } \pi_{r+1}(X) = \mathbb{Z}_2.
\end{align*}\tag{2}$$

Furthermore, since $M(\mathbb{Z}_m, r)$ is an $(r+1)$-dimensional CW-complex and the $(r+2)$-skeleton of X is X, it follows from standard cellular approximation arguments that $\pi_r(\mathbb{Z}_m; X) \approx \pi_r(\mathbb{Z}_m; X)$. Hence we have

$$\pi_r(\mathbb{Z}_m; X) \approx \mathbb{Z}_{2d}.\tag{3}$$

Next let Y be a product of Eilenberg-MacLane spaces, $Y = K(\mathbb{Z}_n, r)$

Received by the editors July 26, 1962 and, in revised form, November 14, 1962.

\footnote{We have been informed that such an example was known to Eckmann and Hilton.}
AN EXAMPLE FOR HOMOTOPY GROUPS WITH COEFFICIENTS

Since \(\pi_i(Y) = \pi_i(K(Z_n, r)) \oplus \pi_i(K(Z_2, r + 1)) \), by (2) we have that \(\pi_i(X) \) and \(\pi_i(Y) \) are isomorphic for all \(i \). Now we consider \(\pi_r(Z_m; Y) \). Clearly \(\pi_r(Z_m; Y) = \pi_r(Z_m; K(Z_n, r)) \oplus \pi_r(Z_m; K(Z_2, r + 1)) \). By (1), \(\pi_r(Z_m; K(Z_n, r)) \approx \text{Hom}(Z_m, Z_n) = Z_d \). Also by (1),

\[
\pi_r(Z_m; K(Z_2, r + 1)) \approx \text{Ext}(Z_m, Z_2) = Z_2.
\]

Thus

\[
(4) \quad \pi_r(Z_m; Y) \approx Z_d \oplus Z_2.
\]

A comparison of (3) and (4) shows that \(\pi_r(Z_m; X) \) is not isomorphic to \(\pi_r(Z_m; Y) \). But we have already seen that \(\pi_i(X) \approx \pi_i(Y) \) for all \(i \). This completes the example.

We observe that the spaces \(X \) and \(Y \) may be distinguished by invariants other than the \(r \)th homotopy group with coefficients in \(Z_m \). For instance, it is easily seen that \(H_{r+1}(X) = 0 \) and \(H_{r+1}(Y) = Z_2 \).

In closing we note that the spaces \(X \) and \(Y \) serve as an example for homotopy groups with coefficients as defined by Katuta [3]. This is so since, for a finite coefficient group, Katuta’s groups are the same as the ones we consider, except for a dimensional shift of one unit.

REFERENCES

Princeton University