EXPONENTIAL SUMS RELATED TO POLYNOMIALS
OVER THE GF(p)

STEPHAN R. CAVIOR

1. Let \(k \) denote the finite field \(\text{GF}(p) \), and let \(f(x) = a_0 + \cdots + a_n x^n \) be a polynomial function over \(k \). We define

\[
M(f) = \sum_{a \equiv \text{mod } p} e^{2\pi i f(a)/p},
\]

where \(p \) is an odd prime.

Some years ago L. Carlitz and S. Uchiyama \cite[pp. 37–39]{1} proved that

\[
|M(f)| \leq (r - 1) \cdot p^{1/2}.
\]

This result has raised some questions about the distribution of values of the \(M \)-function, and in particular, the question whether \(M(f) \) can equal an integral multiple of \(p^{1/2} \). The object of this paper is to determine which polynomial functions satisfy the equality

\[
|M(f)| = p^{1/2}.
\]

2. First we prove

THEOREM 1. Let \(R(\zeta) \) denote the cyclotomic field generated by \(\zeta = e^{2\pi i/p} \), where \(p \) is an odd prime, and let \(\alpha \) be an integer in \(R(\zeta) \). Then

\[
|\alpha| = p^{1/2}
\]

if and only if

\[
\alpha = \pm \zeta^s \cdot \sum_{r \equiv \text{mod } p} \zeta^r \quad (0 \leq s \leq p - 1).
\]

By a well-known property of the Gauss sum, it is obvious that (4) holds if (5) holds.

To prove the converse, we first suppose that \(\alpha, \beta \) are integers in \(R(\zeta) \) such that

\[
|\alpha| = |\beta| = p^{1/2}.
\]

Then

\[
\alpha \cdot \overline{\alpha} = p, \quad \beta \cdot \overline{\beta} = p,
\]

Received by the editors January 3, 1963.

\footnote{Supported by National Science Foundation grant G16485.}
and since \((1 - \zeta)\) is a prime ideal of \(R(\zeta)\) such that \((\wp) = (1 - \zeta)^{p-1},\)
(4) implies
\[
(\alpha \cdot \bar{a}) = (\alpha)^2 = (1 - \zeta)^{p-1},
\]
\[
(\beta \cdot \bar{b}) = (\beta)^2 = (1 - \zeta)^{p-1}.
\]
Consequently
\[
(9) \quad \alpha = \epsilon (1 - \zeta)^{(p-1)/2}, \quad \beta = \epsilon' (1 - \zeta)^{(p-1)/2},
\]
where \(\epsilon, \epsilon'\) are units. We note immediately that
\[
(10) \quad \eta = \frac{\alpha'}{\alpha}
\]
is a unit, and we note by (6) that \(|\eta| = 1.\)
Since \(\eta\) is a unit, it satisfies some polynomial \(h(x)\) with integer coefficients, and since \(|\eta| = 1\), we have
\[
(11) \quad \eta \cdot \bar{\eta} = 1.
\]
If we set
\[
(12) \quad \eta^{(i)} = T^{(i)}(\eta) \quad (1 \leq i \leq p - 1),
\]
where \(T^{(i)}\) is the automorphism of \(R(\zeta)\) defined by
\[
(13) \quad T^{(i)}: \zeta \rightarrow \zeta^i \quad (1 \leq i \leq p - 1),
\]
it is clear from Galois theory that
\[
(14) \quad \eta^{(i)} \cdot \bar{\eta}^{(i)} = 1 \quad (1 \leq i \leq p - 1).
\]
Since (12) comprises all the roots of \(h(x)\), we see from (14) that the conjugates of \(\eta\) are unimodular. Therefore we know [2, Theorem 910, p. 223] that \(\eta\) must be a root of unity; i.e.,
\[
(15) \quad \eta = \pm \zeta^s \quad (0 \leq s \leq p - 1).
\]
We have already noted that
\[
(16) \quad \left| \sum_{r \pmod{p}} \zeta^{rs} \right| = p^{1/2}.
\]
Therefore, if \(\alpha \in R(\zeta)\) and \(|\alpha| = p^{1/2}\), we conclude that
\[
(17) \quad \alpha = \pm \zeta^s \cdot \sum_{r \pmod{p}} \zeta^{rs} \quad (0 \leq s \leq p - 1).
\]
This completes the proof of the theorem.

3. We now prove
Theorem 2. The total number T of polynomial functions f over k such that $|M(f)| = p^{1/2}$ is given by

$$T = \frac{2p \cdot p!}{2^{(p-1)/2}}.$$

Suppose f is a polynomial function such that

$$M(f) = \sum_{r \pmod{p}} \zeta^{r^2}.$$

Using the identity

$$\sum_{r \pmod{p}} \zeta^{r^2} = 1 + 2 \cdot \sum_{\chi(a) = 1} \zeta^a,$$

we note that by putting

$$\sum_{r \pmod{p}} \zeta^{r^2} = a_0 + a_1 \zeta + \cdots + a_{p-1} \zeta^{p-1},$$

we have

$$a_0 = 1,$$

$$a_i = \begin{cases} 2 & (\chi(i) = 1), \\ 0 & \text{(otherwise),} \end{cases} \quad (1 \leq i \leq p - 1).$$

Therefore if a is a fixed number in k such that $\chi(a) = 1$, there are precisely two numbers b_0, b_1 in k such that $f(b_0) = f(b_1) = a$; furthermore, there is a unique number c in k such that $f(c) = 0$. This last statement is in fact a necessary and sufficient condition for a function f to satisfy (19), so the number of such functions is

$$\left(\begin{array}{c} p \\ 2 \end{array} \right) \left(\begin{array}{c} p - 2 \\ 2 \end{array} \right) \cdots \frac{p!}{2^{(p-1)/2}},$$

where the symbols in (20) are binomial coefficients.

Suppose now that g is a function such that

$$M(g) = \pm \zeta^s \cdot \sum_{r \pmod{p}} \zeta^{r^2} \quad (1 \leq s \leq p - 1).$$

Since the field $R(\zeta)$ must have an automorphism which maps the right member of (19) onto its negative, it is obvious that we can rewrite (21) in the form

$$M(g) = \sum_{r \pmod{p}} \zeta^{m(r)},$$

where $m(r)$ is a quadratic polynomial in r. Using the properties of a quadratic polynomial over k and the earlier combinatorial argu-
ments, we find that the number of functions g that satisfy (21) is also given by (20). Finally, since there are $2p$ sums in (5), we conclude that

$$T = \frac{2p \cdot p!}{2^{(p-1)/2}}$$

This completes the proof of the theorem.

References

State University of New York, Buffalo