ON THE STRUCTURE OF THE GREEN'S OPERATOR

ROBERT CARROLL

1. Introduction. In the study of Cauchy problems of the form

\[\frac{du}{dt} + Au = f; \quad u(t) = T \]

(where for example: \(t \to u(t) \in \mathcal{C}^k(H) \) on \((\tau, b] \); \(t \to u(t) \in \mathcal{C}^0(D(A)) \) on \([\tau, b] \); \(H \) is a Hilbert space; \(-A \) is a closed (unbounded) operator, infinitesimal generator of a strongly continuous semi-group; \(\mathcal{C}^k(H) \) is the space of \(k \)-times continuously differentiable functions of \(t \) with values in \(H \); the domain of \(A \), \(D(A) \), has the graph topology; and \(f, T \) are suitable), the solution takes the appearance

\[u(t) = G(t, \tau)u(\tau) + \int_{\tau}^{t} G(t, \xi)f(\xi)d\xi. \]

Formally the Green's operator \(G(t, \xi) \) may be written \(G(t, \xi) = \exp[-A(t-\xi)] \) (for general results in this direction see for example \([1; 2; 3]\)). In this article we propose to study representations related to (1.2) for solutions of general operational differential equations \(Su = f \) (the operators need not be differential operators of course but therein lies the motivation, see \([4; 5]\); cf. also the papers \([3; 6; 7; 8; 9; 10]\)).

2. Basic framework. Let \(H \) be a Hilbert space and \((S_0, S'_0) \) a formally adjoint pair of closed densely defined operators in the sense...
of Browder [7]. Define $S_1 = S_0^*$ (then $S_0 \subseteq S_1$) and let $H_0 = D(S_0)$, $H_1 = D(S_1)$, where H_0 and H_1 have the graph topology. Then $H_0 \subseteq H_0 \subseteq H$ (algebraically and topologically) and following [10] we set $H_1 = H_0 \oplus B$ where B is the so-called Cauchy space or space of abstract boundary conditions (see [7; 9; 10]). The symbol \oplus denotes here an orthogonal direct sum (topological); when we wish to speak of a not necessarily orthogonal direct sum (topological) of two closed complementary subspaces M_1 and M_2 of a Hilbert space M we will write $M = M_1 + M_2$ (see here [11, p. 482]). It will be assumed throughout that S_0 is 1-1 with S_0^{-1} continuous and that S_1 is onto H. (Such hypotheses are verified in many problems of interest; they imply (see [7]) that S_0' has a closed range $\mathcal{R}(S_0')$ and that (S_0, S_0') has a solvable realization operator \hat{S}; $R(S_0)$ is clearly closed also.) Now we will call any topological supplement of H_0 in H_1 a Cauchy space Γ and write $H_1 = H_0 + \Gamma$ where in general H_0 and Γ are not orthogonal. Clearly any such Γ is isomorphic to B (both are isomorphic to H_1/H_0). Then operators \hat{S} such that $S_0 \subseteq \hat{S} \subseteq S_1$ are characterized by linear subspaces $\hat{\Gamma}$ of Γ; that is, $\hat{H} = D(\hat{S})$ is the set $\{u_1: u_1 \in H_1; ju_1 \in \hat{\Gamma} \subseteq \Gamma\}$ where $j: H_1 \to \Gamma$ is the (open) projection determined by H_0 and Γ. Then $\hat{H} = H_0 + \hat{\Gamma}$ and \hat{H} would be given the graph topology. The following diagram will be useful in illustrating the subject (note ker S_1 is closed in H or H_1)

\[
\begin{array}{ccccccccc}
0 & \to & \ker S_1 \\
\downarrow & & \downarrow & & \downarrow \\
0 & \to & H_0 & \to & H_1 & \overset{j}{\to} & \Gamma & \to & 0 \\
S_0 & \downarrow \\
& & \overset{i}{\to} & \overset{i}{\to} & \overset{i}{\to} & R(S_0) & \to & H & \to 0 \\
0 & \to & 0 & & & & & & .
\end{array}
\]

The horizontal and vertical sequences are exact (and split by the Banach theorem of homomorphisms). The continuous maps i (injection), S_1, and j (projection) may be thought of as morphisms in the category of Hilbert spaces. Note now that $H_0 + \ker S_1$ is closed and hence a topological direct sum since if u_n is Cauchy in $H_0 + \ker S_1$ with $u_n = u_{0n} + u_{1n}$ then $S_0 u_{0n}$ converges which implies that u_{0n} converges. The diagram (2.1) may be further expanded as follows (cf. [7]), defining $\hat{\Gamma}$ to be any topological supplement of $H_0 + \ker S_1$ in H_1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
ON THE STRUCTURE OF THE GREEN'S OPERATOR

\[H_0 + \ker S_1 + \Gamma \xrightarrow{j} \{0\} + \Gamma_0 + \tilde{\Gamma} \]

\[(2.2) \]

\[\downarrow S_1 \]

\[R(S_0) + \{0\} + \tilde{\Gamma} \]

where \(\Gamma_0 = j(\ker S_1) \), \(\tilde{\Gamma} = S_1 \Gamma \), and in abuse of notation we identify \(\Gamma \) and \(j\tilde{\Gamma} \). It is clear that \(\tilde{\Gamma} \) is closed since \(S_1 \) is open and an isomorphism on \(\Gamma \); to see that \(\tilde{\Gamma} \cap R(S_0) = \{0\} \), suppose the contrary. Thus if \(h_0 \in H_0 \), \(h \in \tilde{\Gamma} \), and \(S_0 h_0 = S_1 h \), it follows that \(h_0 - h \in \ker S_1 \); since \(h_0 - h \in H_1 \) we must have \(h_0 - h = 0 \). Evidently \(H = R(S_0) + \tilde{\Gamma} \).

We define the Green’s operator to be the map \(\mathcal{G} : (j\mu_1, S_1 u_1) \rightarrow u_1 \) \(\Gamma \times H \rightarrow H_1 \) which recovers \(u_1 \) from a knowledge of \(j\mu_1 \) and \(S_1 u_1 \). It is seen from the diagrams that \(\mathcal{G} \) is well defined (if \(j\mu_1 = S_1 u_1 = 0 \) then \(u_1 \in \ker S_1 \cap H_0 = \{0\} \)). Moreover suppose \(j\mu_1 \rightarrow 0 \) in \(\Gamma \) and \(S_1 u_1 \rightarrow 0 \) in \(H \); then writing \(u_1 = u_0 + u \), \(u_0 \in H_0 \), \(u \in \Gamma \), we have \(u \rightarrow 0 \) in \(\Gamma \) and \(S_1 u_0 + S_0 u_0 \rightarrow 0 \) in \(H \). Hence \(u \rightarrow 0 \) in \(H \), \(S_1 u \rightarrow 0 \) in \(H \), and \(S_1 u + S_0 u_0 \rightarrow 0 \) in \(H \). This implies \(S_0 u_0 \rightarrow 0 \) in \(H \) and therefore \(u_0 \rightarrow 0 \) in \(H \) by the continuity of \(S_0^{-1} \). Thus finally \(u_1 \rightarrow 0 \) in \(H_1 \) and we have

Proposition 1. The map \(\mathcal{G} : \Gamma \times H \rightarrow H_1 \) defined by \(\mathcal{G}(j\mu_1, S_1 u_1) = u_1 \) is continuous.

It should be noted that \(\mathcal{G} \) is not a bilinear map in the usual sense and is defined only on the set \(G = \{(j\mu_1, S_1 u_1)\} \subset \Gamma \times H \).

3. Decomposition of the Green's operator. By the preceding it follows that if \(j\mu_1 = 0 \) (i.e. \(u_1 \in H_0 \)) then \(\mathcal{G}(0, S_1 u_1) \) defines a continuous map \(\mathcal{G}_2 : R(S_0) \rightarrow H_1 \). Clearly on \(R(S_0) \), \(\mathcal{G}_2 \) may be written as \(S_0^{-1} = \tilde{S}_0^{-1} \) where \(\tilde{S} \) is a solvable realization operator for \((S_0, S_1) \); hence \(\mathcal{G}_2 \) may be extended (as \(\tilde{S}_0^{-1} \)) to a continuous map \(\mathcal{G}_2 : H \rightarrow H_0 + \tilde{\Gamma} \) (cf. [7]). On the other hand if \(u_1 \in \ker S_1 \), then \(\mathcal{G}(j\mu_1, 0) \) determines a continuous map \(\mathcal{G}_1 : \Gamma_0 \rightarrow H_1 \) (the identity) which may be extended to a continuous map (the identity) \(\mathcal{G}_1 : \Gamma_0 + \tilde{\Gamma} \rightarrow H_1 \). Then for \(u_1 \in H_0 + \ker S_1 \)

\[(3.1) \]

\[u_1 = \mathcal{G}_1(j\mu_1) + \mathcal{G}_2(S_1 u_1), \]

whereas for \(u_1 \in \tilde{\Gamma} \) we must have

\[(3.2) \]

\[u_1 = \mathcal{G}_1(j\mu_1) = \mathcal{G}_2(S_1 u_1). \]

Our interpretation of (1.2) is

\[(3.3) \]

\[u_1 = \mathcal{G}_2(\rho S_1 u_1) + \mathcal{G}_1(j\mu_1), \]

where \(\rho : H \rightarrow R(S_0) \) is the projection, determined by \(R(S_0) \) and \(\tilde{\Gamma} \). Another formula for the solution similar to (3.3) is
\(u_1 = \mathcal{G}_2(S_1 u_1) + \mathcal{G}_1(\beta j u_1), \)

where \(\beta: \Gamma \to \Gamma_0 \) is the projection, determined by \(H_0 \) and \(\ker S_1 \). Note that the split \(H_0 + \ker S_1 \) is predetermined; however there is still liberty in choosing \(\Gamma \) and hence \(\hat{H} \).

We recall now the notion of a kernel for an operator \(T: \mathcal{C} \to \mathcal{C}_1 \) (see here for example [12; 13; 14]); we consider kernels in the sense of Aronszajn and will not attempt to treat here situations requiring the Schwartz kernel theorem (see [15]). Assuming \(\mathcal{C} \) and \(\mathcal{C}_1 \) are separable Hilbert spaces of equivalence classes of measurable functions over a regular measure space \((X, \mu) \) (see [12]), then \(T \) has a kernel \(T(y, \cdot) \) if: (1) for all \(y \in X \), \(T(y, \cdot) \in \mathcal{C} \); (2) the map \(y \mapsto T(y, \cdot): X \to \mathcal{C} \) is measurable; (3) for all \(h \in D(T) \), \((T h)(y) = (h, T(y, \cdot)) \) almost everywhere. If for example all functions in the range of a bounded operator \(T \) are continuous then following Theorem 4 of [12] it is seen that \(T \) has a kernel \(T(y, \cdot) \). This will often prevail in applications (cf. [17]).

Suppose now that \(S_1 \) and \(S_2 \) have kernels \(g_1(\xi, \cdot) \) and \(g_2(\xi, \cdot) \); \(g_1 \) and \(g_2 \) are considered as operators in \(\Gamma \) and \(H \) respectively. Then for example (3.3) may be written (see [16] for extensions of (1.2))

\[(3.5) \quad u_1 = (\rho S_1 u_1, g_2(\xi, \cdot))_H + (j u_1, g_1(\xi, \cdot))_H. \]

We denote the adjoints of continuous maps \(T \) by \(T^* \) and those of unbounded maps \(T \) by \(T^* \). Then from (3.5), since \(g_1 \in \Gamma \)

\[(3.6) \quad u_1 = (u_1, iS_1 \rho g_2(\xi, \cdot) + jg_1(\xi, \cdot)) u_1, \]

The following exact sequences indicate how the maps work:

\begin{align*}
(1) & \quad 0 \to H \to H_0 \xrightarrow{j} R(S_0) \to 0; \\
(2) & \quad 0 \to H \ominus R(S_0) \to H \xrightarrow{j\rho} H \ominus \hat{H} \to 0; \\
(3) & \quad 0 \to H_0 \to H_1 \xrightarrow{j} \Gamma \to 0; \\
(4) & \quad 0 \to H_1 \ominus \Gamma \to H_1 \xrightarrow{j} H_1 \ominus H_0 \to 0; \\
(5) & \quad 0 \to \ker S_1 \to H_1 \xrightarrow{S_1} H \to 0; \\
(6) & \quad 0 \to H \xrightarrow{iS_1} H_1 \ominus \ker S_1 \to 0
\end{align*}

(note also \(\iota S_1: R(S_0) \to H_1 \ominus (\Gamma + \ker S_1) \) and \(\iota S_1: \hat{H} \to H_1 \ominus (H_0 + \ker S_1) \)).

It is seen that certain problems arise because of the fact that even if \(H_1 = (H_0 + \ker S_1) \oplus \Gamma \) it is not true necessarily that \(H = R(S_0) \oplus \hat{H} \), where \(\hat{H} = S_1 \Gamma \). For example if we choose \(\hat{H} \) first, orthogonal to
$R(S_0)$, and define $\tilde{T} = S_0\tilde{H}$, then \tilde{T} is orthogonal to $H_0 + \ker S_1$; however then $S_0\tilde{T} \neq \tilde{H}$ in general.

Proposition 2. Assume ξ_1 and ξ_2 have kernels as above; then H_1 has a reproducing kernel given by

$$h_1(t, \cdot) = \xi_1 T g_1(t, \cdot) + T j g_1(t, \cdot). \tag{3.7}$$

We may relate ξ_1 to our original operators as follows. Assume $v \in H$ and $\xi_1 v = w$; then for all $u \in H_1$ we have $(S_1 u, v)_H = (u, w)_H$. This means $(S_1 u, v - S_1 w)_H = (u, w)_H$. Therefore $v - S_1 w \in D(S_-)$ and since $S_- = S_0'$ it follows that $w = S_0' (v - S_1 w)$ (recall H_1 is dense in H). Thus w appears as a solution of the equation $(v - S_1 w) = (S_0')^{-1} w$. We note that $g_1(t, \cdot)$ as defined is a reproducing kernel for Γ and thus for $u_1 \in \Gamma$ there results $u_1 = (u_1, h_1)_H = (u_1, g_1)_H$. In general g_1 is the component of h_1 in Γ when H_1 is written in the form $\Gamma \oplus (H_1 \oplus \Gamma)$. It should be observed that H_0 orthogonal to $\ker S_1$ in H_1 is impossible and this fact is closely connected with the development which we have given. A result similar to (3.7) can also be obtained using (3.4). By virtue of the above we may now write (3.7) in a form suitable for calculation.

$$T \rho g_2 = ((S_0')^{-1} + S_1)(h_1 - T j g_1). \tag{3.8}$$

This formula will not however entirely determine g_2 in terms of h_1 and g_1; it defines g_2 up to a term in $H \oplus R(S_0)$. However, this is sufficient and we have

Proposition 3. The component of g_2 in $R(S_0)$ is determined by (3.8) if h_1 and g_1 are known. If therefore \tilde{H} is chosen orthogonal to $R(S_0)$ (with $\tilde{\Gamma} = \tilde{S}^{-1}\tilde{H}$), then $\xi_2(\rho S_1 u_1)$ is fully determined by (3.8).

On the other hand let h_1 be given; then g_1 is determined as the component of h_1 in Γ when H_1 is decomposed as $H_1 = \Gamma \oplus (H_1 \oplus \Gamma)$. Thus if J is the orthogonal projection $J: H_1 \to \Gamma$ then $g_1 = J h_1$. Define then the element $\rho g_2 = (S_0^{-1}(h_1 - T j g_1))$. This is well-defined if $h_1 = h_0 + g_1$, $h_0 \in H_1 \oplus \Gamma$, $g_1 \in \Gamma$, then $j h_1 = j g_1 = g_1 \in H_1 \oplus H_0$ and since t_1 is a projection $h_1 - j g_1 \in H_1 \oplus \Gamma$; thus $h_1 - j g_1 \in H_1 \oplus \ker S_1$ with $'S_1^{-1}(h_1 - g_1)$ well defined. Now since $h_1 - j g_1 \in H_1 \oplus \Gamma$ we have $'S_1^{-1}(h_1 - j g_1) \in R(S_0)$ and thus $'\rho g_2 \in R(S_0)$. Assuming now $H = R(S_0) \oplus \tilde{H}$ with $\tilde{\Gamma} = \tilde{S}^{-1}\tilde{H}$, it follows that $'\rho g_2$ defines an element $g_2 (= '\rho g_2)$ in $R(S_0)$ with

$$\rho S_1 u_1, g_2)_H = (S_1 u_1, '\rho g_2) = (S_1 u_1, 'S_1^{-1}(h_1 - j g_1)) = (u_1, h_1 - j g_1) = g_2(\rho S_1 u_1). \tag{3.9}$$

Hence ξ_2 has a kernel g_2 in $R(S_0)$ given by $'p^{-1} 'S_1^{-1}(h_1 - j g_1)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proposition 4. Assume \(H_1 \) has a reproducing kernel \(h_1 \) and \(H = R(S_0) \oplus \bar{H} \). Then \(G_2 \) has a kernel in \(R(S_0) \) determined by (3.8).

Added in proof. The results of this paper are used in constructing abstract Green's operators in [16] for problems related to [5]. It is shown that \(\tilde{S} = S^* \) (notations of [5]) and formulas such as (3.8) and (1.2) can be studied in more detail.

Bibliography

Rutgers, The State University