Harnack’s inequality and theorems on matrix spaces
HTML articles powered by AMS MathViewer
- by Shih-hsiung Tung
- Proc. Amer. Math. Soc. 15 (1964), 375-381
- DOI: https://doi.org/10.1090/S0002-9939-1964-0160926-1
- PDF | Request permission
References
- Tom M. Apostol, Mathematical analysis: a modern approach to advanced calculus, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1957. MR 0087718 E. W. Hobson, The theory of functions of a real variable, Vol. I, Dover, New York, 1957.
- L.-k. Hua and K. H. Look, Theory of harmonic functions of classical domains, Sci. Sinica 8 (1959), 1031–1094 (Chinese, with English summary). MR 120394
- Josephine Mitchell, Potential theory in the geometry of matrices, Trans. Amer. Math. Soc. 79 (1955), 401–422. MR 72242, DOI 10.1090/S0002-9947-1955-0072242-6
- Jürgen Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591. MR 159138, DOI 10.1002/cpa.3160140329
Bibliographic Information
- © Copyright 1964 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 15 (1964), 375-381
- MSC: Primary 32.32; Secondary 32.35
- DOI: https://doi.org/10.1090/S0002-9939-1964-0160926-1
- MathSciNet review: 0160926