EXTREMAL LENGTH OF WEAK HOMOLOGY
CLASSES ON RIEMANN SURFACES

BURTON RODIN

1. The square integrable harmonic differentials on a Riemann surface \(\mathcal{W} \) form a Hilbert space \(\Gamma_h \). Let \(\Gamma_x \) be a closed subspace of \(\Gamma_h \). Let \(c \) be a 1-chain on \(\mathcal{W} \). There exists a unique element \(\psi(c) \in \Gamma_x \) with the property \(\int \omega = (\omega, \psi(c)) \) for all \(\omega \in \Gamma_x \). We refer to \(\psi(c) \) as the \(\Gamma_x \)-reproducing differential for \(c \). Accola [1] has shown that if \(c \) is a cycle, then the extremal length of the homology class of \(c \) is equal to the square of the norm of the \(\Gamma_h \)-reproducing differential for \(c \) (cf. also [3]). Two specific problems raised by Accola's result are the following. For the important subspaces \(\Gamma_x \), does the norm of the \(\Gamma_x \)-reproducing differential for a cycle have an extremal length interpretation? Secondly, we may ask for a family of curves associated with a 1-chain \(c \), not necessarily a cycle, whose extremal length gives the norm of the \(\Gamma_h \)-reproducer for \(c \). (By Abel's theorem, the vanishing of the norm of this reproducer implies that \(\partial c \) is a principal divisor.)

In the present paper we give an answer to the first question for the subspace \(\Gamma_{he} \). Theorem 1 states that an associated geometric configuration is the weak homology class of \(c \).²

2. Let \(\Gamma_x \) be a closed subspace of \(\Gamma_h \) such that \(\Gamma_x = \Gamma_z \). We say that two cycles \(c_1 \) and \(c_2 \) are \(\Gamma_x \)-homologous, denoted by \(c_1 \sim c_2 \) (mod \(\Gamma_x \)), if \(\int c_1 - c_2 \omega = 0 \) for all \(\omega \in \Gamma_x \). Denote the \(\Gamma_x \)-homology class of a cycle \(c \) by \(c^x \).

An invariant expression \(\rho(z) |dz| \) with \(\rho \) a nonnegative and lower semicontinuous function is called a linear density. The \(\rho \)-area is

\[
A(\rho) = \int \int_{\mathcal{W}} \rho^2 dx dy.
\]

The \(\rho \)-length of a family \(\mathcal{F} \) of arcs is

Received by the editors February 27, 1963.

¹ This research was supported by the Air Force Office of Scientific Research.

² Another special case of the first question has been settled by A. Marden. He has shown that a geometric configuration for the subspace \(\Gamma_{ho} \) (notation as in [2]) is the set of relative, i.e., possibly infinite cycles which are weakly homologous to \(c \) [An extremal length problem and the bilinear relation on open Riemann surfaces, doctoral dissertation, Harvard University, May, 1962].
The extremal length of \mathcal{F} is

$$\lambda(\mathcal{F}) = \sup_{\rho} L(\mathcal{F}, \rho)^2 / A(\rho).$$

Lemma 1. Let c be a cycle on W. Let $\lambda(c^e)$ be the extremal length of all cycles Γ_e-homologous to c. Let ψ be the Γ_e-reproducing differential for c. Then $\lambda(c^e) \geq ||\psi||^2$.

Proof. Let $p_0\, dz$ be the linear density $|\psi + i\psi^*|$. Then $A(p_0) = ||\psi||^2$. For $\delta \in c^e$ we have $\int p_0\, dz \geq \int \psi^* = \int |\psi| = ||\psi||^2$, and the desired inequality follows. We have used the fact that $\Gamma_e = \Gamma_z$ which implies that ψ is real.

3. We shall prove a converse of Lemma 1 for $\Gamma_z = \Gamma_{heo}$. First note that $c_1 = c_2$ (mod Γ_{heo}) if and only if $c_1 - c_2$ is weakly homologous to zero. In fact, $c_1 = c_2$ (mod Γ_{heo}) holds exactly when $c_1 - c_2$ is a dividing cycle (see Theorem V.20D of [2]), which in turn is equivalent to being weakly homologous to zero (see Theorem I.32C, ibid.).

Let Ω be the interior of a compact bordered Riemann surface \mathfrak{F}. Let c be a cycle in Ω and ψ_0 the Γ_{heo}-reproducer for c. Let L be the normal operator for the canonical partition of $\partial \Omega$ (cf. [2]). Corollary 6 of [4] shows that $\psi_0 = (2\pi)^{-1} dp^*$ where p is a harmonic function on $W - c$ and satisfies $p = L^* \phi$ in a boundary neighborhood of Ω. Thus p is constant on each contour β_i of \mathfrak{F} and $\int_{\beta_i} dp^* = 0$. If δ is a cycle on Ω then $(2\pi)^{-1} \int_{\delta} dp$ is an integer equal to the intersection number $\delta \times c$. Furthermore, the Γ_{heo}-reproducer for an open surface W is the limit of ψ_0 for exhausting canonical subregions $\Omega \to W$.

In the course of the following proofs we find occasion to use arguments similar to those expressed or implied in Accola [1]. For convenience to the reader we repeat his reasoning in such situations.

Lemma 2. Let c be a cycle on a compact bordered Riemann surface and ψ the Γ_{heo}-reproducing differential for c. Then $\lambda(c_{heo}) = ||\psi||^2$.

Proof. Denote the bordered surface by \mathfrak{F} and its interior by Ω. Let the contours be β_1, \ldots, β_n. Let \mathcal{U} be the equivalence class of β_1 in the sense of Accola [1]. That is, \mathcal{U} is the set of points in \mathfrak{F} which can be joined to a point of β_1 by an arc δ for which $\int_{\delta} \psi^*$ is an integer. \mathcal{U} is a closed set which is locally a level curve of a harmonic function. Let $\Omega - \mathcal{U} = R_1 \cup \cdots \cup R_m$ be a decomposition into components. Each R_i is a finite surface. The points of \mathcal{U} serve as a piecewise analytic
We denote the Riemann surface together with its boundary by R_r. If we allow multiplicities for the prime ends, R_r together with its boundary shall be denoted by R^*_r. We may omit the details of this construction but remark that there is an analytic mapping $R^*_r \to \Omega$ which restricts to the identity on R_r. By means of this mapping we refer to points of ∂R^*_r as belonging to \mathcal{U} or $\partial \Omega$.

ψ^* is exact on R_r, say $\psi^* = dp_r$, and we know that p_r extends harmonically to R^*_r. Since each point of ∂R^*_r belongs to \mathcal{U} or $\partial \Omega$ we see that p_r is constant on each component of ∂R^*_r. We adjust p_r so that the smallest such constant on \mathcal{U} is zero. Now let ρ_r be the collection of those boundary components of R^*_r on which $p_r = 0$, σ_r those on which $p_r = 1$, and let τ_r contain the remaining ones. We orient them so that $\partial R^*_r = \rho_r + \sigma_r + \tau_r$. The points of ρ_r and σ_r belong to \mathcal{U}, those of τ_r belong to $\partial \Omega \setminus \mathcal{U}$. Let us show that if τ_r contains a point t of some β_k then it must contain all of β_k. For $t \in \beta_k$, $\int_t \psi^*$ is not an integer and since $\psi^* = 0$ along β_k, it follows that β_k has a connected neighborhood disjoint from \mathcal{U}. This neighborhood must be in R_r, hence $\beta_k \subset \tau_r$.

By means of the mapping $R^*_r \to \Omega$, we consider σ_r as a 1-chain on Ω and claim that $c = \Sigma_r \sigma_r \mod \Gamma_{hse}$. Let $\omega \in \Gamma_{hse}$ and assume that ω extends harmonically to Ω. Then $\int \omega = \langle \omega, \psi \rangle = \Sigma_r \langle \omega, dp^*_r \rangle$. By partial integration we have $\langle \omega, dp^*_r \rangle = \int d(p_r \wedge \omega) = \int p_r \omega + \int p_r dp_r \omega$. We have seen that τ_r is a union of contours β_r, \ldots, β_n on each of which p_r is a constant. Since ω is semiexact we obtain $\int \omega = \int \sigma_r \omega$. It follows that $c - \Sigma_r \sigma_r$ is a dividing cycle.

The function p_r in R_r has boundary values 0 on ρ_r, 1 on σ_r, and constants k_{nu} on β_n, those contours of Ω which make up τ_r. These constants must satisfy $0 < k_{nu} < 1$ in order for the flux condition $\int_{\partial \Omega} dp^*_r = 0$ to hold. Consequently, for $s \in (0, 1)$ the level curves $\sigma_r(s) = k^{-1}_{nu}(s)$ are compact and weakly homologous to σ_r, except for the finite number of values $s = k_{nu}$. Let $\sigma(s) = \Sigma_n \sigma_n(s)$. Let ρ be a linear density on Ω. Then for almost all $s \in (0, 1)$

$$L^2(\rho, c_{hse}) \leq \left(\int_{\sigma(s)} \rho \psi \right)^2 \leq \int_{\sigma(s)} \rho^2 \psi \int_{\sigma(s)} \psi = \|\psi\|^2 \int_{\sigma(s)} \rho^2 \psi.$$

Integrating over $s \in (0, 1)$ we obtain

$$L^2(\rho, c_{hse}) \leq \|\psi\|^2 A(\rho).$$

This, together with the opposite inequality of Lemma 1, completes the proof.

4. Theorem. Let W be an open Riemann surface. Let ψ be the Γ_{hse}-reproducing differential for a cycle c on W. Then $\|\psi\|^2$ gives the extremal length of all cycles weakly homologous to c.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
PROOF. Let Ω be a canonical subregion of W and ψ_0 the $\Gamma_{h^*}(\Omega)$-reproducing differential for c. Thanks to the above lemmas we have
\[
\lambda(c^{h^*}) \geq ||\psi||^2 = \lim_{a \to \Omega} ||\psi_0||^2 = \lim_{a \to \Omega} \lambda_0(c^{h^*}) \geq \lambda(c^{h^*}).
\]

BIBLIOGRAPHY

HARVARD UNIVERSITY