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An integral domain / (with unit) will be said to be almost Dedekind

if, given any maximal ideal P of J, Jp is a Dedekind domain. It fol-

lows, in particular, that Jp is a discrete valuation ring.

I. S. Cohen, in [l, p. 33] gives six necessary and sufficient condi-

tions that a Noetherian domain / be Dedekind. The first of these is

that Jp he a discrete valuation ring for every maximal ideal P of /.

This paper gives necessary and sufficient conditions that an integral

domain with unit be almost Dedekind and it is shown that these

conditions imply each of the other five conditions of Cohen. Finally,

we investigate relations between the ideal structure of D' and D,

where D is an almost Dedekind domain with quotient field A and

ZJÇD'ÇA. In particular, we show D' is almost Dedekind and that

D' is the intersection of all quotient rings DP of D where P is a prime

ideal of D such that PD' ED'. The results obtained also yield another

proof to the theorem of MacLane and Schilling [2, p. 781] which

asserts that if D is Dedekind, so is D'.

Theorem 1. The integral domain D with unit is almost Dedekind if

and only if
(1) nonzero proper prime ideals of D are maximal, and

(2) primary ideals of D are prime powers.

Proof. We first suppose D is almost Dedekind. (1) follows easily

[l, p. 34]. If Q is primary for the maximal ideal P, then QDp is

primary for PDp. Since Dp is a Dedekind domain, QDp=(PDp)k

= PkDp for some positive integer ¿. Since Q is primary for P, Q

= QDpC\D. But because P is maximal in D, Pk is also primary for P

[4, p. 153]. Thus Pk = PkDp(~\D so that Q = Pk and one half of our

proof is complete.

We now assume that (1) and (2) hold in D. If then P is a nonzero

proper prime ideal of D, P is minimal so that PDP is the unique non-

zero proper prime ideal of Dp. If V is any nonzero proper ideal of Dp,

then VV=PDp, and thus, V is primary for PDP. Hence Q= VC\D

is primary for P in D. By hypothesis, Q = Pk for some ¿. Therefore,

V= (Vr\D)DP = QDp= (PDP)k. Consequently, every ideal of DP is a

prime power, Dp is Dedekind, and D is almost Dedekind.
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Corollary 1. If the integral domain D is almost Dedekind and if A

is a proper ideal of D, then fV=i Ak= (0).

Proof. We let P be a proper prime ideal of D containing A. Since

Dp is Dedekind, flt"L1PtPP=(0). Moreover, ¿*ÇP*çp*.Dp so that

(12.! ¿»-(0).
In [3, p. 426], N. Nakano has given an example of a non-Noether-

ian integral domain IF with unit in which (1) and (2) of Theorem 1

hold. IF is therefore an example of an almost Dedekind domain

which is not Dedekind.

From Theorem 1, we easily deduce that an integral domain J with

unit which is almost Dedekind satisfies the third and fifth conditions

considered by Cohen [l, p. 33].

Corollary 2. If P is a prime ideal of J, there is no ideal properly

between P and P2.

Corollary 3. The primary ideals belonging to a prime ideal of J are

totally ordered by inclusion.

In addition, Cohen noted that such a domain / has the following

three properties [l, p. 34].

(a) J is integrally closed. (This is true whether integral closure is

defined in terms of modules or in terms of roots of monic poly-

nomials.)

(b) For any  three ideals  A,  B,   C of  /,  Af~\(B + C) = (AC~\B)
+(Ar\c).

(c) For any three ideals A, B, Col J, A:(BC\C) = (A:B)+(A:C).

If D is any integral domain with unit, if A is an ideal of D, if

{Af\}xeA is the collection of maximal ideals of D, and if for XGA,

A^ = ADM^C\D, then A=C\AX [5, p. 94].

If now D is almost Dedekind and A ¿¿ (0), then for A Cfc-Mx, ADM^

= DM^ and Ax = D = (M>i)0. But if AÇ.MX, ADMx is primary for

M),Dmx so that ADmx = M*Dmx and A\ = Ml for some integer ¿. If S

is the collection of nonzero ideals of D, then for XGA, we denote by

fx the function from S into Z such that for A E&,f\(A) is the smallest

nonnegative integer ¿ such that A\= M^. It follows from the preced-

ing paragraph that

a = n mïw
XeA

for each A ES. Further, if D* = D— {o}, then for each XGA we may

define Vy. D*—>Z by V\(x) =/x((x)). Theorem 2 gives useful informa-

tion concerning the functions V\ and f\.
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Theorem 2. Let D, D*, A, A, X, f\, and V\ be as in the preceding para-

graph.

(i)  There exists an integer k è 0 such that A ç Ml, A % Mx+1. Further,

k=h(A).
(ii) Por x, y £ D*, V\(xy) = V\(x) + F*(y) ara¿ Fx(x + y)

^min{ V\(x), V\(y)}. Therefore, V\ determines in a canonical way a

valuation sx of the quotient field K of D [5, p. 37]. Dmx is the valuation

ring of sx.

(iii) For m\EM\ — Ml and for 0^^£A, there exist u, vED — M\
such that

£ = um\     /v.

Proof. That such an integer k in (i) exists is an immediate conse-

quence of Corollary 1. If now A QM{, A <£ Afx+1, then ADMx = M^Dm^

lor some r^t. If aEA-M[+1, then because i¥x+1 = PfWx+1I>Mx,

aEADMx — Mt^1DMr Thus .4 P^ = .MxZ>mx and t=f\(A) as asserted.

The statements in the first sentence of (ii) follow easily from the

definition of Fx. Then from (i) it is clear that the valuation ring of

sx contains Dmx- Because Dmx is a maximal subring of A [S, p. 17],

Dmx is the valuation ring of sx.

In view of (i), s\(m\) = 1. Thus if y = i/ms^\ then s\(y) =0. Hence

y is a unit of Pmx- Because y£Pji/x, y = u/v for some uED, vED — M\.

Now s\(v) = 0 so that s\(u) = 0 also—that is, ra£Afx.

Theorem 3. Let D be an integral domain with unit which is almost

Dedekind. D is a Dedekind domain if and only if every nonzero proper

ideal of D is contained in only finitely many maximal ideals. In par-

ticular, an almost Dedekind domain with only a finite number of maxi-

mal ideals is a principal ideal domain.

Proof. We note that if Mi, • ■ • , Mt are distinct maximal ideals

of D and if ei, • ■ • , et are positive integers, then the ideals MJ1, • • • ,

M"' are pairwise comaximal. Hence 0^! M?= H'-i Mf. Our theo-

rem now follows from the paragraph preceding Theorem 2 and from

the known theory of Dedekind domains.

In terms of the valuations of the quotient field of an almost Dede-

kind domain D we can phrase Theorem 3 : D is Dedekind if and only

if D is a Krull domain [5, p. 82].

We next consider domains between an almost Dedekind domain

and its quotient field.

Theorem 4. Suppose D is an almost Dedekind domain, K is the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



816 R. w. gilmer, jr. [October

quotient field of D, and D' is a domain such that DÇZD'ÇLK. We let

A be the set of prime ideals P of D such that PD' ED'. Then

(a) If M is a maximal ideal of D' and if P = MC\D, then DP = D'M

and M = PDPr\D'. Therefore D' is almost Dedekind.

(b) 2/ D is Dedekind, so is D'.

(c) For P a proper prime ideal of D, PEA if and only if DPr)D'.

Further, P>' = ripSA DP.

(d) If A' is an ideal of D' and if A=AT\D, then A' = AD'.
(e) {PD'} pea, is the set of proper prime ideals of D'.

Proof. In (a), we know P is a maximal ideal of D. If N = D—P,

then Dp = DnÇLD'nç:D'mEK. Because DP is a maximal subring of

K, DP = D'm- D'm is therefore a discrete valuation ring with maximal

ideal MD'M = PDP. It follows that D' is almost Dedekind and that

M=AID'Mr\D' = PDPr\D'.

We now suppose that D is Dedekind. D' is almost Dedekind by (a).

To show D' is Dedekind it suffices, in view of Theorem 3, to show

that if A' is a nonzero proper ideal of D', A' is contained in only

finitely many maximal ideals. If now Pi, • • ■ , Pt are the maximal

ideals of D which contain A=AT\D, then from assertion (a) we

see that Pi DPlC\D'', • • • , PtDP¡C\D' are all the maximal ideals of

D' containing A'. Hence D' is also Dedekind.

To prove (c), we see easily that if DP^.D', then PD'QPDPEDP

so that PD'ED'. Conversely, if P^(0) and PD'ED', we let M be
a maximal ideal of D' containing PD'. Then PçzPD'nDQMnD ED

so that P = MC\D since P is a maximal ideal of D. From part (a) we

see that DP = D'UDD'. This proves PGA if and only if DP^D'. Now

if { -MxJaga is the collection of maximal ideals of D', then D' = C\Djjx

[5, p. 94]. By (a) and the first part of (c), for each X, D'Mx = D(jwxnc)

and (M\C\D)Eà. It follows that D' = f\PeA DP.

In (d) we need only consider the case when (0) EA' ED'- We shall

first show that if M is a maximal ideal of D' and if P = Mf~\D, then

Pk = Mkr\D for each positive integer ¿. This is true since

P* = PkDP r\D = MkD'M C\D = MkD'M C\ (D' C\ D)

- (MkD'M r\D')i\D = MkC\D.

It is clear that AD'QA' and hence, that f\(AD') ^h(A') for each

XGA. Since 5 = rixeA M{x(B) for each nonzero ideal B of D', to show

AD' = A', it suffices to show MAD') =fr(A') lor each XGA. From

part (a) this means we must show that if the integer ¿ is such that

A'QMl,   A'&M?1,   then   AD'QM^1.   Because   Ml+lC\D = Pl+1
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where Px = MXP\P, it is sufficient to show A ÇT_Px+1. This follows es-

sentially from (iii) of Theorem 2.

We have P\ = Mlf\DCPX = MXHP so that if mxEPx~Pl, then
my.EMi.-Ml. If now ££4'-Afî+1, then sx(£)=¿ and ^ = um\/v for

some w, vED-Px- Then ^ = mwx£4-P^+1 so that ¿^P^1 and

our proof of (d) is complete.

By (d), every proper prime ideal of D' is of the form PD' for some

P£A. If, however, P£A, then by (c), DP^D' so that PDPr\D' is a

prime ideal of D'. By (d), PDPr\D'= [(PDPr\D')r\D]D' = PD' and
consequently, PD' is a prime ideal of D' for P£A.

Another result concerning almost Dedekind domains which is the

analogue of a theorem concerning Dedekind domains is the following

corollary. The proof uses results in [4, pp. 257, 261, 281].

Corollary 4. // the integral domain D is almost Dedekind, if K is

the quotient field of D, and if D' is the integral closure of D in a finite

algebraic extension field L of K, then D' is almost Dedekind.

Proof. If M is a nonzero proper prime ideal of D', then P = MC\D

is a nonzero proper prime ideal of D. If A = P—P, then Dp = Dn and

D'n is integral over P#. Because D' is integrally closed in L, D'x is

also integrally closed in L. Thus D'N is the integral closure of the dis-

crete valuation ring DN in L. Consequently, D'N is Dedekind so that

D'm=(D'm)md'„ is a discrete valuation ring. Therefore, D is almost

Dedekind.

Remarks. Corollary 4, as well as the following result, was com-

municated to us by H. S. Butts and R. C. Phillips.

^4ra integral domain J with unit is almost Dedekind if and only if

each ideal of J with prime radical is a prime power.

In a paper, The cancellation law for ideals in a commutative ring, to

appear in the Canadian Journal of Mathematics, we show that an

integral domain / with unit is almost Dedekind if and only if the

cancellation law for ideals is valid in J—that is, if A, B, and C are

ideals of J such that A B = A C and A ^ (0), then B = C.

Parts (c), (d), and (e) of Theorem 4 are known when D is a Dede-

kind domain, though we are unaware of a proof in the literature. For

D Dedekind, it is also true that if Ax and A2 are distinct collections

of prime ideals of D, then f\plEA1 Dp^ClpeA, DP. We believe this as-

sertion is false for D almost Dedekind, but lack an example.

The definition of an almost Dedekind domain can easily be ex-

tended to the case of an integral domain without unit. Theorem 1 is

no longer valid in this case. For example, if A is any ideal of a Dede-

kind domain D, then for each prime ideal P of the domain A, Apis a.

discrete valuation ring.
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A NOTE ON PERTURBATION THEORY FOR
SEMI-GROUPS OF OPERATORS

A. OLUBUMMO

1. Introduction. Let X be a Banach lattice and 2= { P(£); £^0}

a family of bounded operators on X satisfying

(0 r(£i+£2) = r«i)r(i2), p(o)=j, ogÇi, ¿2<cc;

(ii) x^O implies that P(£)x^0 for each £^0;

(hi) ||r(|)|| álfor^O;
(iv) lim£» o P(£)x = x for each xGX.

We shall refer to S as a strongly continuous semi-group of positive

contraction operators.

Lumer [2 ] has shown that for a complex (real) normed linear space

X, there exists at least one complex-valued (real-valued) function

[x, y] called a semi-inner-product defined on XXX having the fol-

lowing properties:

[x + y,z] = [x, z] + [y, z],

[Xx, z] = \[x, z],

[x,x] = ||x||2,

Ik«]I ¿HI 114
If X is a Banach lattice, then Phillips [4] has shown that there exists

a semi-inner-product with the further properties:
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