ON THE INVERSE PROBLEM OF GALOIS THEORY OF DIFFERENTIAL FIELDS

A. BIALYNICKI-BIRULA

0. One can ask what algebraic groups are isomorphic to groups of automorphism of strongly normal extensions of a fixed ordinary differential field (see [2]). The purpose of the note is to give a contribution in this direction. We shall prove the following theorem.

THEOREM. Let \mathcal{F} be an ordinary differential field with algebraically closed field of constants \mathbb{C} and suppose that \mathcal{F} is of finite transcendence degree over \mathbb{C} but is different from \mathbb{C}. Let G be a connected nilpotent affine algebraic group defined over \mathbb{C}. Then there exists a strongly normal extension \mathcal{S} of \mathcal{F} such that the Galois group $\text{Gal}(\mathcal{S}/\mathcal{F})$ is isomorphic to $G(\mathbb{C})$.

1. All fields considered here are of characteristic 0. Let F be a field, let \mathbb{C} be an algebraically closed subfield of F. Let G be a connected algebraic group defined over \mathbb{C}. $F(G)$ denotes the field of all rational functions on G defined over F. If $g \in G$ then $F(g)$ denotes the field generated by g over F. We shall say that a derivation of $F(G)$ commutes with $G^*(\mathbb{C})$ if it commutes with g^*, for every $g \in G(\mathbb{C})$, where g^* denotes the automorphism of $F(G)$ induced by the left translation by g, i.e., $(g^*f)(x) = f(gx)$, for any $x \in G$. \mathfrak{g}_F denotes the Lie algebra of all derivations of $F(G)$ that are zero on F and which commute with $G^*(\mathbb{C})$. If G_1 is a normal subgroup of G defined over F then $F(G/G_1)$ is canonically isomorphic to a subfield of $F(G)$; we shall identify $F(G/G_1)$ and this subfield.

If R is an integral domain then (R) denotes the field of fractions of R. Every derivation d of R can be uniquely extended to a derivation of R (the extended derivation will be also denoted by d). If F_1, F_2 are two fields containing F as a subfield and if d_1, d_2 are derivations of F_1, F_2, respectively, such that $d_1|F = d_2|F$ and $d_1(F) \subset F$ then $d_1 \otimes d_2$ denotes the derivation of $F_1 \otimes_F F_2$ determined by $(d_1 \otimes d_2)(a \otimes b) = d_1(a) \otimes b + a \otimes d_2(b)$, for every $a \in F_1$ and $b \in F_2$.

d_0 denotes the zero derivation of a field (it will be always clear what field we have in mind). The underlying field of an ordinary differential field \mathcal{F} will be denoted by F.

2. LEMMA 1. If d_1 belongs to the center of \mathfrak{g}_F then the derivation $d_1 \otimes d_0$ of $(C(G) \otimes F) (= F(G))$ commutes with every derivation d of $F(G)$ such that $d(F) \subset F$ and $d g^* = g^* d$ for every $g \in G(\mathbb{C})$.

Received by the editors June 12, 1963.
Proof. Let \(d \) be as in the lemma. Then \(d - d_0 \otimes (d|F) \) is zero on \(F \) and commutes with \(G^*(F) \) and so \(d - d_0 \otimes (d|F) \in \mathfrak{g}_F \). But \(d_1 \otimes d_0 \) belongs to the center of \(\mathfrak{g}_F \) and commutes with \(d_0 \otimes (d|F) \). Thus \(d_1 \otimes d_0 \) commutes with \(d = d - d_0 \otimes (d|F) + d_0 \otimes (d|F) \).

Lemma 2. Let \(G_1 \) be a normal subgroup of \(G \) defined over \(C \) and let \(d^0 \) be a derivation of \(F(G/G_1) \) such that \(d^0(C) = 0 \) and \(d^0 \) commutes with any element from \((G/G_1)^*(C) \). Then there exists an extension \(d' \) of \(d^0 \) to a derivation of \(F(G) \) that commutes with \(G^*(C) \).

Proof. Let \(g \) be a generic point of \(G \) over \(F(G) \). Extend \(d^0 \) to a derivation \(d_1 \) of \(F(G) \) and let \(d_2 \) be the extension of \(d_1 \) to a derivation of \(F(g)(G) \) which is trivial on \(C(g) \). Let \(V \) be a nonempty affine open subset of \(G \) defined over \(C \) and let \(C[x_1, \ldots, x_n] \) be the coordinate ring of \(V \) over \(C \). Then there exists \(h_0 \in V(C) \) such that \(d_1x_1, \ldots, d_1x_n \) are defined at \(h_0 \). Hence, if \(a \in F(g)(G) \) is defined at \(h_0 \) then \(d_2(a) \) is also defined at \(h_0 \). In particular, for any \(a \in F(G) \), \(d_2((gh_0^{-1})^*a) \) is defined at \(h_0 \) (since \(((gh_0^{-1})^*a)(h_0) = a(g) \)). Let, for any \(a \in F(G) \), \(d'(a) \) be the element of \(F(G) \) such that \(d'(a)(g) = d_2((gh_0^{-1})^*a)(h_0) \). One can easily see that the definition of \(d' \) does not depend on \(g \). In particular, if \(g_i \) is any point of \(G \) such that \(C(g_i) = C(g) \), then \(g_i \) is generic for \(G \) over \(F \) and so \(d'(a)(g_i) = d_2((g_ih_0^{-1})^*a)(h_0) \). Hence, for any \(h \in G(C) \), \((h \cdot d'(a))(g) = d'(a)(hg) = d_2((hgh_0^{-1})^*a)(h_0) = d_2((gh_0^{-1})^*h^*a)(h_0) = d'(h^*a)(g) \), since \(C(hg) = C(g) \). Thus \(d_1h^* = h^*d_1 \), i.e., \(d_1 \) commutes with \(G(C)^* \). Moreover, \(d' \) is a derivation of \(F(G) \). Indeed

\[
d'(a + b)(g) = d_2((gh_0^{-1})^*(a + b))(h_0) = d_2((gh_0^{-1})^*a)(h_0) + d_2((gh_0^{-1})^*b)(h_0) = d'(a)(g) + d'(b)(g)
\]

and

\[
d'(ab)(g) = d_2((gh_0^{-1})^*ab)(h_0) = d_2((gh_0^{-1})^*a)(h_0) \cdot (gh_0^{-1})^*b(h_0) + (gh_0^{-1})^*a(h_0) \cdot d_2((gh_0^{-1})^*b)(h_0) = d'(a)(g) \cdot b(g) + a(g) \cdot d'(b)(g).
\]

Finally, if \(a \in F(G/G_1) \) then

\[
d'(a)(g) = d_2((gh_0^{-1})^*a)(h_0) = d^0((gh_0^{-1})^*a)(h_0) = (gh_0^{-1})^*d^0(a)(h_0) = d^0(a)(g),
\]

i.e., \(d' \) is an extension of \(d^0 \). This completes the proof of the lemma.

Lemma 3. Let \(G_1 \) be a connected central one-dimensional normal sub-
group of an affine connected algebraic group G, both defined over F. Let $d_1 \in \mathfrak{o}_F$ be a derivation in the direction of G_1. Then, for any $a \in F(G)$, $d_1(a) = 0$ if and only if $a \in F(G/G_1)$. Moreover, there exists an element $b \in F(G) - F(G/G_1)$ such that either $d_1(b) = c \cdot b$ or $d_1(b) = c$, where c is an element from $F(G/G_1)$.

Proof. The first part of the lemma is well known. Let b' be a regular function on G such that $b' \in F(G) - F(G/G_1)$. Then $G^*_1(F) \cdot b'$ generates a finite-dimensional F-vector space. Since G_1 is one-dimensional and connected, hence we may assume that this space is either one-dimensional or two-dimensional with basis b_0, b', where $b_0 \in F(G/G_1)$ and $g^*(b') = \alpha(g)b_0 + b'$, $\alpha \in F(G/G_1)$ and $\alpha(g) \neq 0$ if $g \neq \text{identity element} e$ of G_1. Then it follows from Lemma 7 [1] that in the first case $d_1(b') = c \cdot b'$, where c is an element from $F(G/G_1)$ and we may take $b = b'$. In the second case (again by Lemma 7 [1]) $c_1d_1^2(b') + c_2d_1(b') + c_3b = 0$, for some c_1, c_2, $c_3 \in F(G/G_1)$ which do not vanish simultaneously. Then $0 = g^*(c_1d_1^2(b') + c_2d_1(b') + c_3b') = c_1d_1(b') + c_2d_1^2(b') + c_3(\alpha(g)b_0 + b')$, for every $g \in G_1(F)$. Hence $c_2 = 0$ and $c_1 \neq 0$. If $c_2 \neq 0$, then $d_1(d_1(b')) = -\frac{c_2}{c_1}$, $d_1(b') \neq 0$, and we take $b = d_1(b')$. If $c_2 = 0$, then $d_1^2(b') = 0$. Hence $d_1(b') \in F(G/G_1)$, and we take $b = b'$.

Lemma 4. Let \mathcal{F} be an ordinary differential field with derivation d, let C be the field of constants of \mathcal{F} and suppose that F is of finite transcendence degree over C. Let \mathcal{F}_1 be a (differential) subfield of \mathcal{F} which is not contained in C and let $c \in C$. Then there exist a_1, $a_2 \in \mathcal{F}_1$, $a_1 \neq a_2$, such that there is no element $y \in \mathcal{F} - C$ which satisfies either $dy = a_1 \cdot c$ or $dy = a_2 \cdot c$.

Proof. We may suppose that \mathcal{F}_1 contains an element x such that $dx = 1$ (let $x \in \mathcal{F}_1 - C$; then $dx \neq 0$ and we may replace d by $1/dx \cdot d$). If $dy_n = c/(x + n)$, $y_n \in \mathcal{F} - C$, where n is an integer, then, one can prove that the elements y_n, for different integers i, are algebraically independent over C. Similarly, if $dz_n = x^nc_n$, then the elements z_n, for different integers i, are also algebraically independent over C. Hence F contains only a finite number of elements y_i and z_n. Thus, for some n, y_n, $z_n \in \mathcal{F}$ and the lemma is proved.

3. **Proof of the theorem.** Let d be the nonzero derivation of \mathcal{F}. We shall show that one can extend d to a derivation d^* of $F(G)$ which commutes with $G^*(C)$ and has C as the field of constants. Proof by induction on the dimension of G.

If $\dim G = 0$, then this is trivial.

Suppose that the above is true for connected nilpotent affine groups of dimension n and let $\dim G = n + 1$. There exists a central connected
normal subgroup G_1 of G defined over C and of dimension 1. Then G/G_1 is an affine nilpotent connected group of dimension n. Hence there exists an extension d^0 of d to a derivation of $F(G/G_1)$ such that C is the field of constants of d^0 and d^0 commutes with $(G/G_1)^*(C)$. It follows from Lemma 2 that d^0 can be extended to a derivation d' of $F(G)$ that commutes with $G^*(C)$. Let $d_1 \in \mathcal{O}_F$ be a derivation of $F(G)$ in the direction of G_1. Then the field of constants of d_1 is $F(G/G_1)$ and it follows from Lemma 1 that d_1 commutes with every derivation a^d, where $a \in F$. Therefore the set of all $b \in F(G)$, for which $d_1(b) = ad'(b)$, where a is fixed, is a subfield F_α of $F(G)$ closed under d_1 (and ad'). Indeed, it is easy to see that this is a field. Moreover, if $d_1(b) = ad'(b)$, then $d_1(d_1(b)) = d_1(ad'(b)) = ad'(d_1(b))$. C is the field of constants of $d_1|F_\alpha$ for $a \neq 0$, since the field of constants of d_1 is $F(G/G_1)$ and the field of constants of $ad' | F(G/G_1)$ is C. And we want to prove that $F_\alpha = C$, for some $a \in F$. Let $a \in F$; consider the ordinary differential field $(F(G) \otimes F(G/G_1))$ together with the derivation $ad' \otimes d_0$ and the algebraic closure $(F(G) \otimes F(G/G_1))^*$ of $(F(G) \otimes F(G/G_1))$ with the unique extension $(ad' \otimes d_0)^*$ of $(ad' \otimes d_0)$. F_α is linearly disjoint from $F(G/G_1)$ over C since $F(G/G_1)$ is the field of constants of d_1 and C is the field of constants of $d_1|F_\alpha$ (see Proposition 1 in [3] or Lemma 1 in [1]). Hence there exists a subfield of $F(G)$ with d_1 which is canonically isomorphic to $(F_\alpha \otimes F(G/G_1))$ with $(ad' | F_\alpha) \otimes d_0$. $F(G)$ is an algebraic extension of the subfield unless $F_\alpha = C$ and this isomorphism maps b onto $1 \otimes b$, for every $b \in F(G/G_1)$. Therefore $F_\alpha \neq C$ implies that there exists an isomorphism α_0 of $F(G)$ with d_1 into $(F(G) \otimes c F(G/G_1))^*$ with $(ad' \otimes d_0)^*$ such that $\alpha_0(b) = 1 \otimes b$, for every $b \in F(G/G_1)$. It follows from Lemma 3 that there exist elements $c \in F(G/G_1)$ and $y \in F(G) - F(G/G_1)$ such that either $d_1y = c$ or $d_1y = cy$. Therefore, for every $a \in G$, $a \neq 0$ for which $F_\alpha \neq C$, we have that either $(ad' \otimes d_0)^*\alpha_0(y) = 1 \otimes c$ or $(ad' \otimes d_0)^*\alpha_0(y) = (1 \otimes c)\alpha_0(y)$, i.e., either $(d' \otimes d_0)^*\alpha_0(y) = 1 \otimes c/a \otimes 1$ or $(d' \otimes d_0)^*\alpha_0(y) = 1 \otimes c/a \otimes 1 \alpha_0(y)$. But it follows from Lemma 4 that there exist a_1, $a_2 \in F$ such that neither $(d' \otimes d_0)^*z = 1 \otimes c/a \otimes 1$ nor $(d' \otimes d_0)^*z = (1 \otimes c/a \otimes 1)z$ has a solution z in $(F(G) \otimes F(G/G_1))^*$. Then $a_1 \neq 0 \neq a_2$ and either $F_{a_1} = C$ or $F_{a_2} = C$. If $F_{a_1} = C$, then $a \neq 0$ and the field of constants of $d^* = (1/a)d_1 - d'$ is C. Moreover, d^* commutes with $G^*(C)$. Thus we have proved by induction that there exists an extension d^* of d that commutes with $G^*(C)$ and has C as the field of constants.

Now if d^* is such a derivation then $F(G)$ with d^* is a strongly normal extension of \mathcal{O} and $G(C)$ is the Galois group of the extension (see Proposition 1 and Theorem 1 in [1]).
ON A REALIZATION OF A COMPLEMENTED ALGEBRA

PARFENY P. SAWOROTNOW

In this note we intend to show that each simple complemented algebra is isomorphic to an algebra described in the example below (as in [6] we use the term "simple" to mean "simple and semisimple"). This paper can be considered as a continuation of [5] and [6].

In the example below (and in the proof of the theorem after it) we use terms "summable" and "integrable" in the sense defined in Chapter III of [3].

EXAMPLE. Let (S, μ) be a measure space. Let $K(s)$ be a real-valued function defined on S and having the following properties:

(i) $K(s)$ is finite almost everywhere,

(ii) there exists a positive number a such that $af \leq K(s)$ for each $s \in S$,

(iii) the restriction of $K(s)$ to any summable subset of S is integrable (in particular $K(s)$ may be integrable).

Let A be the set of all complex-valued members x of $L^2(S \times S, \mu \times \mu)$ such that $\int \int |x(t, s)|^2 K(s) dtds$ is finite. Then A is a complemented algebra in the scalar product $(x, y) = \int \int x(t, s) \bar{y}(t, s) K(s) dtds$ and the multiplication $(xy)(t, s) = \int x(t, r) y(r, s) dr$ (we consider pointwise addition and pointwise multiplication with a scalar). If $K(s)$ is bounded above then A is well complemented. Condition (ii) implies continuity of the multiplication (in both factors simultaneously); if $a = 1$ then $\|xy\| \leq \|x\| \|y\|$.

Presented to the Society, August 24, 1956, under the title Diagonalization of a complemented algebra; received by the editors July 15, 1963.