ERRATA, VOLUME 14

Page 934, Equation (9): “$C_{n-1}^\lambda(u/v)$” should read “$C_{n-1}^\lambda(u/v)$.”

Page 936, Equation (13):

\[
\left[\frac{n-2}{2} \right] \text{ should read } \left[\frac{n-1}{2} \right].
\]

ERRATA, VOLUME 15

Page 18, line 12 (second term in expression for $g_u(x)$). The exponent should read $tu + t(t + 1)/2$.

Page 474, line 6. Read $n > j$ for $n > 0$.

Line 10. For the last 2^{n-i-1}, read 2^{n-i}.

Line 5 on page 507 which now reads “K into L. $\cdots g(R') = S'$.” should be changed to read “K into L. Let S^* be the quotient ring of $g(R')$ with respect to $g(M)$ where we regard S^* to be a subring of L. Assume that $g(K) = L$. Then $S' = S^*$.”

Lines 9 to 14 on page 507 which now read “$g(R') = S'$. Now \cdots normal.” should be changed to read “$S' = S^*$. Now assume that furthermore $c(R) \cap M \neq \emptyset$. Fix $w \in c(R) \cap M$. Since $S' = S^*$, given any $z \in S'$ there exists $w' \in R'$ and $w^* \in M$ such that $z = g(w')/g(w^*)$; since $w \in M$, upon multiplying the numerator and the denominator by $g(w)$ we get that $z = g(ww')/g(ww^*)$; since $w' \in R'$ and $w \in c(R)$ we get that $ww' \in R'$; now $ww^* \in M$ and hence $z \in S$. Thus $S' = S$, i.e., S is normal.”

The third and the fourth sentences in the last paragraph on page 507 which now read “Since $g(R) \subseteq S$, \cdots be given.” should be changed to read “Therefore by [5, Lemma 2 on p. 257] we get that S^* is integral over S and hence $S^* \subseteq S'$. To show that $S' \subseteq S^*$, let $x' \in S'$ be given.”

The last two sentences on page 508 which now read “Since $mm' \in M$, \cdots hence $x' \in g(R')$." should be changed to read “Now $mm' \in M$ and $x' = g(t)/g(mm')$. Therefore $x' \in S^*$. “

1000