ERRATA, VOLUME 14

K. N. Srivastava, A class of integral equations involving ultraspHERiCal polynomials as kernel, pp. 932–940.

Page 934, Equation (9): "C_{n-1}^{\lambda}(u/v)" should read "C_{n-1}^{\lambda}(u/v)."

Page 936, Equation (13):

\[
\left[\frac{n - 2}{2} \right] \quad \text{should read} \quad \left[\frac{n - 1}{2} \right].
\]

ERRATA, VOLUME 15

Culbreth Sudler Jr., Two algebraic identities and the unboundedness of a restricted partition function, pp. 16–20.

Page 18, line 12 (second term in expression for g_u(x)). The exponent should read tu+t(t+1)/2.

G. M. Bergman, A ring primitive on the right but not on the left, pp. 473–475.

Page 474, line 6. Read n>j for n>0.
Line 10. For the last 2^{n-i-1}, read 2^{n-i}.

Shreeram Abhyankar, A remark on the nonnormal locus of an analytic space, pp. 505–508.

Line 5 on page 507 which now reads "K into L. \cdots g(R') = S'." should be changed to read "K into L. Let S* be the quotient ring of g(R') with respect to g(M) where we regard S* to be a subring of L. Assume that g(K) = L. Then S' = S*.

Lines 9 to 14 on page 507 which now read "g(R') = S'. Now . . . normal." should be changed to read "S' = S*. Now assume that furthermore c(R) \cap M \neq \emptyset. Fix w \in c(R) \cap M. Since S' = S*, given any z \in S' there exists w' \in R' and w* \in M such that z = g(w')/g(w*); since w \in M, upon multiplying the numerator and the denominator by g(w) we get that z = g(ww')/g(ww*); since w' \in R' and w \in c(R) we get that ww' \in R; now ww' \in M and hence z \in S. Thus S' = S, i.e., S is normal."

The third and the fourth sentences in the last paragraph on page 507 which now read "Since g(R) \subseteq S, \cdots be given." should be changed to read "Therefore by [5, Lemma 2 on p. 257] we get that S* is integral over S and hence S* \subseteq S'. To show that S' \subseteq S*, let x' \in S' be given."

The last two sentences on page 508 which now read "Since mm' \in M, \cdots hence x' \in g(R')." should be changed to read "Now mm' \in M and x' = g(t)/g(mm'). Therefore x' \in S*."