On the measure-theoretic character of an invariant mean
HTML articles powered by AMS MathViewer
- by R. G. Douglas PDF
- Proc. Amer. Math. Soc. 16 (1965), 30-36 Request permission
References
-
S. Banach, Théorie des opérations linéaires, Monogr. Mat., Warsaw, 1932.
J. R. Blum and D. L. Hanson, On invariant probability measures. I, Pacific J. Math. 10 (1960), 1125-1129.
- Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 92128
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869 E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Grundlehren der Mathematischen Wissenschaften, Bd. 115, Springer, Berlin, 1963.
- Shizuo Kakutani, On cardinal numbers related with a compact Abelian group, Proc. Imp. Acad. Tokyo 19 (1943), 366–372. MR 15124
- Dorothy Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 108–111. MR 6595, DOI 10.1073/pnas.28.3.108
Additional Information
- © Copyright 1965 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 16 (1965), 30-36
- MSC: Primary 28.75
- DOI: https://doi.org/10.1090/S0002-9939-1965-0169983-0
- MathSciNet review: 0169983