By a K-R manifold we mean an n-manifold with boundary M^n such that $\text{Int } M^n = E^n$ and $\text{Bd } M^n = E^{n-1}$; $\text{Int } M^n$ and $\text{Bd } M^n$ are the interior and boundary of M^n respectively. Both Cantrell [2] and Doyle [3] have shown that for $n \neq 3$, each K-R manifold is the product $E^{n-1} \times [0, 1)$. But for $n = 3$ there are infinitely many K-R manifolds which are topologically distinct as pointed out in [4] and [5]. We will investigate certain properties of these manifolds with boundary.

Lemma 0. Let M^n be a K-R manifold. Then M^n is the product $E^{n-1} \times [0, 1)$ if each compact set in M^n lies in a closed n-cell in M^n.

Proof. The proof is simple in that M^n can be represented as a union of closed n-cells $\bigcup C_i$ where $C_i \cap \text{Bd } M^n$ is an $(n-1)$-cell D_i nicely imbedded in $\text{Bd } C_i$ and $\text{Bd } M^n$, $D_i \subset \text{Int } D_{i+1}$ and $C_i - D_i \subset \text{Int } C_{i+1}$, while $[C_{i+1} - C_i]$ is an n-cell. One can then construct a homeomorphism of M^n onto a copy of $E^{n-1} \times [0, 1)$.

Lemma 1. Let M^n be an n-manifold with boundary. If C is a compact set in M^n such that $C \cap \text{Bd } M^n$ lies in an open $(n-1)$-cell in $\text{Bd } M^n$, then there is a pseudo-isotopy h_t of M^n onto M^n such that $h_t(C) \subset F \cup C'$, where F is a fiber in a collar about $\text{Bd } M^n$, and C' is a compact set in $\text{Int } M^n$.

Received by the editors August 4, 1963.

1 The work was done under National Science Foundation Grant GP-31.
Proof. That $\text{Bd } M^n$ is collared in M^n follows from [1]. Since $C \cap \text{Bd } M^n$ lies in an open $(n-1)$-cell in $\text{Bd } M^n$, there is a closed n-cell P^n in M^n such that $P^n \cap \text{Bd } M^n$ is an $(n-1)$-cell Q^n_{n-1}.

$C \cap \text{Bd } M^n \subset \text{Int } Q^n_{n-1}$, $[\text{Bd } P^n - Q^n_{n-1}]$ is an $(n-1)$-cell Q^n_{n-1} and the set $M^n = (M^n - P^n) \cup Q^n_{n-1}$ is homeomorphic to M^n.

Since $C \cap \text{Bd } M^n \subset \text{Int } Q^n_{n-1}$, $C \cap Q^n_{n-1} \subset \text{Int } Q^n_{n-1}$. Thus $C \cap P^n$ lies in an n-cell P^n_1 in P^n, $\text{Bd } P^n_1 \cap \text{Bd } P^n$ is a pair of $(n-1)$-cells in $\text{Int } Q^n_{n-1}$ and $\text{Int } Q^n_{n-1}$. One can evidently find a pseudo-isotopy h_t of M^n onto M^n which carries P^n_1 to a fiber F in the collar about $\text{Bd } M^n$, while h_t is fixed outside any neighborhood U of P^n_1 and for all t, $h_t(P^n_1) = P^n$.

If h_t is the terminal map, let $C' = h_1[(C - P^n)]$. Then $h_1(C) \subset F \cup C'$, $\rho = F \cap \text{Bd } M^n$, a point.

Theorem 1. Let M^n be a 3-dimensional $K-R$ manifold, $M^n \neq E^3 \times [0, 1)$. Then there is a polygonal graph $G (G \cap \text{Bd } M^n = \rho, a \text{ point})$ in M^n which lies in no closed 3-cell J^3 in M^n such that $G - \rho \subset \text{Int } J^3$.

Proof. Let M^n be given a fixed triangulation [7]. By Lemma 0 there is a compact set $C \subset M^n$ and C lies in no closed 3-cell in M^n. We assume without loss of generality that $C \cap \text{Bd } M^n$ is a disk D. Since C lies in no closed 3-cell in M^n, C lies in no closed 3-cell K which meets $\text{Bd } M^n$ in a disk containing D in its interior while $C - D \subset \text{Int } K$.

Now by Lemma 1, C can be deformed into a set of the form $h_1(C) = F \cup C'$, where $C' \subset \text{Int } M^n$ is compact and F is a polygonal fiber in the collar about $\text{Bd } M^n$, $F \cap \text{Bd } M^n = \rho$. Then again there is no closed 3-cell K which meets $\text{Bd } M^n$ in a disk containing ρ in its interior, while $(F \cup C') - \rho \subset \text{Int } K$. For if such a 3-cell K were to exist there would be a value $0 < t < 1$ such that $h_t(C) - h_t(D) \subset \text{Int } K$ and $h_t(D)$ lies interior to the disk $K \cap \text{Bd } M^n$.

Let N^n be the open 3-cell obtained by attaching an open collar to $\text{Bd } M^n$ by an extension of the triangulation on M^n. In order to construct G, let H^n be a polyhedral 3-cell in $\text{Int } M^n$ such that $C' \subset \text{Int } H^n$ [6]. If g_t is a pseudo-isotopy of M^n onto M^n which is semi-linear and fixed outside a neighborhood of H^n in $\text{Int } M^n$ such that $g_1(H^n) = q$, a point, $g_t | M^n - H^n$ is a homeomorphism, then $g_t(F \cup C') = G$ is a polygonal graph. If there were a closed 3-cell J^3 such that $\text{Int } J^3 \supset G - \rho$, one could assume that $\text{Bd } J^3$ is locally bicollared except at ρ.

If J^3 is a 3-cell in $\text{Int } J^3$ except for the point ρ of J^3, one can shrink J^3 to a point ρ by a pseudo-isotopy of M^n onto M^n which is fixed outside of J^3. Evidently there is a closed 3-cell K in M^n, $K \cap \text{Bd } M^n$ is a disk with ρ in its interior, $G - \rho \subset \text{Int } K$. But by the construction of G it follows that $F \cup C'$ and hence C must lie in a 3-cell. But this is contrary to hypothesis.
One may quickly deduce from Theorem 1 the following characterization.

Theorem 2. A necessary and sufficient condition that a 3-dimensional K-R manifold M^3 be $E^3 \times [0, 1)$ is that each graph G meeting $\text{Bd} M^3$ in a point x lie interior to a closed 3-cell except for x.

Corollary. Let M^3 be a K-R manifold of dimension 3 and let p be a point of $\text{Bd} M^3$. If $M^3 \not= E^3 \times [0, 1)$, then $\text{Int} M^3 \cup p$ is not topologically the interior of a closed 3-simplex plus a point of its boundary.

Theorem 3. If M^n_1 and M^n_2 are 3-dimensional K-R manifolds, then $M^n_1 \times M^n_2 = E^n \times [0, 1)$ and $M^n_1 \times E^1 = E^n \times [0, 1)$.

Proof. By either [2] or [3], a K-R manifold M^n of dimension $n \not= 3$ is $E^{n-1} \times [0, 1)$.

References

7. ———, *An alternative proof that 3-manifolds can be triangulated*, Ann. of Math. (2) 69 (1959), 37–65.

Michigan State University and Virginia Polytechnic Institute