Tame arcs on disks
HTML articles powered by AMS MathViewer
- by Joseph Martin PDF
- Proc. Amer. Math. Soc. 16 (1965), 131-133 Request permission
References
- R. H. Bing, Each disk in $E^{3}$ contains a tame arc, Amer. J. Math. 84 (1962), 583–590. MR 146811, DOI 10.2307/2372864 —, Improving the side approximation theorem, Abstract 603-72, Notices Amer. Math. Soc. 10 (1963), 453.
- R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145–158. MR 61377, DOI 10.2307/1969836
- David S. Gillman, Side approximation, missing an arc, Amer. J. Math. 85 (1963), 459–476. MR 160193, DOI 10.2307/2373136
- O. G. Harrold Jr., H. C. Griffith, and E. E. Posey, A characterization of tame curves in three-space, Trans. Amer. Math. Soc. 79 (1955), 12–34. MR 91457, DOI 10.1090/S0002-9947-1955-0091457-4 J. P. Hempel, Extending a surface in ${E^3}$ to a closed surface, Abstract 63T-65, Notices Amer. Math. Soc. 10 (1963), 191.
- Isaac Kapuano, Sur les surfaces homéomorphes à un disque dans un $R^3$, C. R. Acad. Sci. Paris 236 (1953), 1229–1231 (French). MR 53502
- Edwin E. Moise, Affine structures in $3$-manifolds. VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. (2) 59 (1954), 159–170. MR 61822, DOI 10.2307/1969837
Additional Information
- © Copyright 1965 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 16 (1965), 131-133
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9939-1965-0175103-9
- MathSciNet review: 0175103