and

\[\limsup_{r \to 0} \left(\mu(r) \right)^{1/n(r)} = \infty. \]

REFERENCES

University of North Carolina

MIXED BOUNDARY-VALUE PROBLEMS IN THE PLANE

J. A. VOYTUK AND R. C. MAC CAMY

Let \(R \) be a region in the plane bounded by a simple analytic curve \(C \) composed of \(N \) arcs \(C_1 \cdots C_N \). Let \(a_m, b_m, f_m \) be analytic functions on \(C_m \). Suppose \(q(x, y) \) is non-negative in \(R \). The mixed boundary-value problems discussed here require the determination of a solution of

\[
\begin{align*}
(E) & \quad \Delta u - qu = 0 \quad \text{in } R, \\
(A) & \quad a_mu - b_m u = f_m \quad \text{on } C_m,
\end{align*}
\]

\(n \) the exterior normal. The problem is called regular if on each \(C_m \) either

(i) \(a_m > 0, \quad b_m \geq 0 \)

or

(ii) \(a_m = 0, \quad b_m > 0 \).

This note presents an existence theorem based on integral equations. The method is an extension of the solution of the Dirichlet problem by simple layers as in [1] and [4]. It is intended also to provide information as to the behavior of \(u \) at the ends of the \(C_k \).

THEOREM 1. Every regular mixed problem has a unique solution.

Received by the editors September 28, 1963.

1 This work was supported by the Air Force Office of Scientific Research and the National Science Foundation.
Uniqueness follows from the maximum principle. To establish existence we use the Neumann function \(N(P, Q) \) for (E). This is the solution having the form

\[
N(P, Q) = A(P, Q) \log PQ + B(P, Q), \quad A(P, P) = -1,
\]

and satisfying

\[
N_n(P, Q) = 0, \quad P \in C \text{ if } q \neq 0; \quad N_n(P, Q) = 2\pi/L, \quad P \in C \text{ if } q = 0,
\]

where \(L \) is the length of \(C \). We seek the solution in the form

\[
u(P) = \frac{1}{2\pi} \sum_{m=1}^{N} \int_{C_m} \sigma_m(Q) N(P, Q) \ dS.
\]

Then by (1) and (2),

\[
u_n = \begin{cases}
\sigma_k & \text{on } C_k \quad \text{if } q \neq 0, \\
\sigma_k + \frac{1}{L} \sum_{m=1}^{N} \int_{C_m} \sigma_m \ dS & \text{on } C_k \quad \text{if } q = 0.
\end{cases}
\]

Suppose first that \(q \neq 0 \). Then conditions (A) require

\[
a_k(P)\sigma_k(P) + \frac{b_k(P)}{2\pi} \sum_{m=1}^{N} \int_{C_m} \sigma_m(Q) N(P, Q) \ dS = f_k(P) \quad \text{on } C_k.
\]

In case (i), (5) is a Fredholm system. If \(\sigma_k^0 \) is a solution of the homogeneous system the function \(u^0 \) formed as in (3) is a solution of the homogeneous boundary problem hence zero and by (4), \(\sigma_k^0 = 0 \). If some \(a_k \equiv 0 \), the corresponding equation in (4) is of first kind. To illustrate, assume \(a_2 \equiv 0, \ a_k \neq 0 \) for \(k \neq 2 \). Then the second equation in (5) is

\[
\int_{C_2} \sigma_2(Q) N(P, Q) \ dS
\]

\[
= - \left(2\pi f_2(P) + \sum_{m=1, m \neq 2}^{N} \int_{C_m} \sigma_m(Q) N(P, Q) \ dS \right) / b_2 \quad \text{on } C_2,
\]

the other equations remaining the same.

Let the curves \(C_m \) be parameterized by \(x_m(t), y_m(t), 0 \leq t \leq 1 \). Since \(N \) is a solution of (E), \(\text{grad } A = 0 \) at \(P = Q \). Thus, if \(P = (x_2(t), y_2(t)), \ Q = (x_2(\tau), y_2(\tau)) \), we have

\[
N(P, Q) = -2 \log |t - \tau| + R_{22}(t, \tau),
\]

where \(R_{22} \) has Hölder continuous derivatives. For \(P \in C_2, \ Q \in C_m, \ m \geq 3, \ N(P, Q) \) is clearly analytic. Let \(t = 0 \) on both \(C_2 \) and \(C_3 \) correspond to their common end while \(t = 0 \) on \(C_1 \) corresponds to its common end with \(C_2 \). Then it can be seen that
\[(8) \quad N(P, Q) = \begin{cases} -2\log |t + \tau| + R_{23}(t, \tau), & P \in C_2, Q \in C_3, \\ -2\log |t + \tau - 1| + R_{21}(t, \tau), & P \in C_2, Q \in C_1, \end{cases} \]

\(R_{23} \) and \(R_{21} \) again having Hölder continuous derivatives. If we incorporate the arc-length elements into \(\sigma_m \), we can write (6) as

\[\int_0^1 \sigma_2(\tau) \log |t - \tau| d\tau \]

\[= -\pi f_2(t)/b_2(t) + \sum_{m=1}^N \int_0^1 \sigma_m(\tau) K_{2m}(t, \tau) d\tau, \quad 0 < t < 1. \]

The left side of (9) can be inverted by a result of Carleman [2].

Lemma 1. The function

\[\frac{1}{\pi^2 \sqrt{\tau(1 - \tau)}} \left[\int_0^1 \frac{\sqrt{\tau(1 - t)}h'(t)}{t - \tau} dt - \frac{1}{2 \log 2} \int_0^1 \frac{h(t)}{\sqrt{\tau(1 - t)}} dt \right] \]

is a solution of the equation

\[\int_0^1 v(\tau) \log |t - \tau| d\tau = h(t), \quad 0 < t < 1. \]

The symbol \(\int \) indicates the principal value and the lemma is true for functions \(h \) for which the integrals exist.

The lemma can be applied to (9). As in Lemma 2 below one can show that \(T(\tau; h) \) is continuous in \(0 \leq \tau \leq 1 \) if \(h' \) is continuous. The only troublesome terms come from the logarithms in (8). It can be seen (again compare Lemma 2) that as \(t \to 0 \),

\[\int_0^1 \frac{\sqrt{s(1 - s)}}{s + t} ds = a_0 + O(\sqrt{t}), \quad \int_0^1 \frac{\sqrt{s(1 - s)}}{s - t} ds = a_0 + O(t). \]

Thus,

\[(10) \quad \int_0^1 \frac{\sqrt{s(1 - s)}}{(s - \tau)(t + s)} ds = O(\sqrt{t/(t + \tau)}) \quad \text{as} \quad \tau, t \to 0. \]

We set

\[\tilde{\sigma}_2 = \sqrt{(t(1 - t))}\sigma_2, \quad \tilde{\sigma}_m = \sigma_m, \quad m \neq 2; \]

\[f_2 = -\pi T(\tau; f_2/b_2), \quad f_m = f_m, \quad m \neq 2. \]

Then the inverted equation (9) and equations (5) for \(k \neq 2 \) yield
\begin{align*}
(11) \quad \tilde{\sigma}_k(\tau) &= \tilde{f}_k(\tau) + \sum_{m=1}^{N} \int_{0}^{1} \sigma_m(t) K_{km}(t, \tau) \, dt, \quad 0 < \tau < 1.
\end{align*}

The kernels other than \(K_{21} \) and \(K_{22} \) behave at worst like
\[
[\log |t - \tau|] / \sqrt{t(1 - t)}
\]
and from (10) one deduces,
\[
K_{23} = O\left(\sqrt{t(1 + t)}\right) \quad \text{as} \ t \to 0,
\]
with a similar estimate for \(K_{21} \). It follows that the operators in (11) are completely continuous on the set of \(n \)-tuples of continuous functions. Once again the uniqueness theorem and equation (4) show that the homogeneous system has no nontrivial solution. Thus (11) has a solution and if we retrace the steps we have a solution of the boundary problem. The case \(q = 0 \) requires only minor modifications.

Let the juncture of \(C_m \) and \(C_{m+1} \) be the origin \((0, 0)\) with the \(x \)-axis as their common tangent and let \(r^2 = x^2 + y^2, \theta = \arctan(y/x) \).

\textbf{Theorem 2.} Let \(u \) be the solution of the regular mixed problem with \(a_{k+1} \neq 0 \). Then as \(r \to 0 \),
\begin{enumerate}
 \item if \(a_k = 0 \), \(u_x \sim Cr^{-1/2} \cos(\theta/2), \quad u_y \sim Cr^{-1/2} \sin(\theta/2) \),
 \item if \(a_k \neq 0 \), \(u_x \sim C \log r, \quad u_y = o(\log r) \).
\end{enumerate}

This theorem is an extension of a result of Lewy \[3\] who proved (ii) for \(q = 0 \). Case (i) for \(q = 0 \) is contained in a general result of Voytuk \[5\]. It has been shown that \(\sigma_{k+1} \) is continuous. In case (ii), \(\sigma_k \) is also continuous but in case (i),
\[
\sigma_k(t) - Ct^{-1/2} = o(t^{-1/2}) \quad \text{as} \ t \to 0.
\]

The theorem then follows from the representation (3). The leading terms in \(u_x \) and \(u_y \) come from the two integrals
\[
\int_{C_k} \sigma_k(Q) \log PQ \, dS, \quad \int_{C_{k+1}} \sigma_{k+1}(Q) \log PQ \, dS,
\]
arising from the logarithmic singularity in \(N \). We obtain the desired estimates from the following result.

\textbf{Lemma 2.} Let \(g(t) = t^a + O(t^a) \) as \(t \to 0, \alpha < -1 \). Then for \(A > 0 \),
\[
\frac{\partial}{\partial x} \int_{0}^{A} g(\xi) \log[(x - t) + y^2] \, d\xi = \begin{cases}
C_{r^a} \cos \alpha \theta + o(r^a) \quad &\text{if} \ \alpha < 0, \\
C_{\alpha} \log r + o(\log r) \quad &\text{if} \ \alpha = 0,
\end{cases}
\]
\[
\frac{\partial}{\partial y} \int_{0}^{A} g(\xi) \log[(x - t)^2 + y^2] \, d\xi = \begin{cases}
C_{2^a} \sin \alpha \theta + o(r^a) \quad &\text{if} \ \alpha < 0, \\
o(\log r) \quad &\text{if} \ \alpha = 0.
\end{cases}
\]
Lemma 2 can be proved by taking real and imaginary parts of the estimates for Cauchy integrals in [4] (see also [3]).

Remarks. Extensions are possible in which the smoothness and connectivity requirements are relaxed. In particular, the results can be extended to the case in which the arcs meet at angles. The requirement that (E) satisfy a maximum principle can clearly be replaced by a uniqueness theorem. Thus the ideas can be applied for example to exterior problems for $\Delta u = -u$ where variational methods cannot be used.

References

Western Reserve University and Carnegie Institute of Technology