More about invertible operators without roots
HTML articles powered by AMS MathViewer
- by Juan J. Schäffer
- Proc. Amer. Math. Soc. 16 (1965), 213-219
- DOI: https://doi.org/10.1090/S0002-9939-1965-0173160-7
- PDF | Request permission
References
- Don Deckard and Carl Pearcy, Another class of invertible operators without square roots, Proc. Amer. Math. Soc. 14 (1963), 445–449. MR 149284, DOI 10.1090/S0002-9939-1963-0149284-5
- Paul R. Halmos and Günter Lumer, Square roots of operators. II, Proc. Amer. Math. Soc. 5 (1954), 589–595. MR 62953, DOI 10.1090/S0002-9939-1954-0062953-5
- Paul R. Halmos, Günter Lumer, and Juan J. Schäffer, Square roots of operators, Proc. Amer. Math. Soc. 4 (1953), 142–149. MR 53391, DOI 10.1090/S0002-9939-1953-0053391-9
- G. Lumer, The range of the exponential function, Bol. Fac. Ingen. Agrimens. Montevideo 6 (1957), 53–55. MR 88696
- J. L. Massera and J. J. Schäffer, Linear differential equations and functional analysis. II. Equations with periodic coefficients, Ann. of Math. (2) 69 (1959), 88–104. MR 101954, DOI 10.2307/1970095
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 16 (1965), 213-219
- MSC: Primary 47.10
- DOI: https://doi.org/10.1090/S0002-9939-1965-0173160-7
- MathSciNet review: 0173160