A CLASS OF SIMPLE LATTICE-ORDERED GROUPS

CHARLES HOLLAND

A lattice-ordered group (l-group) is said to be regular if no positive element of the group is disjoint from any of its conjugates. It is well known that every simple regular l-group is totally ordered [5]. The subgroups of the reals are the most elementary examples of regular simple l-groups; other examples can be found in [2] and [6]. In this note we investigate a class of simple l-groups at the opposite extreme from the regular ones. We are concerned with l-groups which contain an insular (defined below) element. An insular element is, roughly speaking, an element which is strongly disjoint from one of its conjugates. In [4] it was shown that every l-group can be represented as an l-group of automorphisms of a totally ordered set, and it was shown that the l-group of automorphisms of the real line with bounded support is simple. It is natural to ask which simple l-groups can be represented as automorphisms of an ordered set with bounded support. Our main result is that these are exactly the simple l-groups containing an insular element. We also construct several examples of such groups.

If L is a totally ordered set and f is an order-preserving permutation of L, we call f an automorphism of L. The support of f consists of those x ∈ L such that xf ≠ x. An automorphism of L is bounded if its support lies in a closed interval of L. An l-group of automorphisms of L is a group of automorphisms of L (under composition) which is a lattice under the operations \(\land \) and \(\lor \) defined by \(x(f \land g) = (xf) \land (xg) \) and dually. Such a group is a lattice-ordered group in the usual sense [1]. If G is an l-group of automorphisms of L, G is o-primitive on L if there is no equivalence relation E on L such that (1) E is a congruence; that is, for all x, y ∈ L, f ∈ G, xEy implies xfEyf, and (2) E is convex; that is, each E-class is a convex subset of L. For elements f, g ≥ 1 of an l-group G, f is right of g if for all 1 ≤ h ∈ G, g \(\land h^{-1}fh = 1 \). An element g ∈ G is insular if for some conjugate g* of g, g* is right of g.

Lemma. Let G be a transitive l-group of automorphisms of an ordered set L. An element 1 < g ∈ G is insular if and only if g is bounded.

Received by the editors September 13, 1963.

1 This research was supported by a grant from the National Science Foundation.
Proof. Suppose the support of g lies in the closed interval $[a, b]$ of L. By transitivity, there exists $1 \leq h \in G$ such that $ah = b$. Let $g^* = h^{-1}gh$. Then for every $x \in [a, b]$, and for every $1 \leq k \in G$, $xk^{-1}h^{-1} \leq xh^{-1} \leq bh^{-1} = a$. Hence $xk^{-1}h^{-1}g = xk^{-1}h^{-1}$. Thus $xk^{-1}g^*k = x$. Therefore the support of $k^{-1}g^*k$ lies outside the interval $[a, b]$, and so $g \cap k^{-1}g^*k = 1$.

Conversely, suppose $g^* = k^{-1}gk$ is right of g. Without loss of generality, $1 \leq k$. There exists $x \in L$ such that $x < xg^*$. If there exists $y \in L$ such that $x < y < yg$, then by transitivity there exists $1 < f \in G$ such that $xf = y$, and thus $yf^{-1}g^*f = xg^*f > xf = y$, which implies $y(\cap f^{-1}g^*f) > y$; that is, $g \cap f^{-1}g^*f > 1$, a contradiction. Hence the support of g is bounded above by x. In a similar manner, there exists $z \in L$ such that $z < zg$. Let $w \leq zk^{-1}$. Then $wk \leq z$, so there exists $h \in G$ such that $1 \leq h$ and $whk = z$. Since $g \cap h^{-1}g^*h = 1$, $z = zh^{-1}k^{-1}gkh = wgkh \geq whk = z$. Hence $wgkh = whk$, and $wg = w$. Therefore, the support of g is bounded below by zk^{-1}.

Theorem. G is a simple l-group containing an insular element if and only if G is a transitive o-primitive l-group of bounded automorphisms of a totally ordered set.

Proof. Let G be a simple l-group containing an insular element g. Every simple l-group is a transitive l-group of automorphisms of an ordered set [4, Theorem 3, Corollary 2]. By the lemma, g must be bounded. It is easily seen that the bounded elements of G form an l-ideal. Thus every element of G is bounded. Hence G is a transitive l-group of bounded automorphisms of an ordered set L. Of course, G need not be o-primitive on L. Let the support of $1 \neq f \in G$ lie in the closed interval $[a, b]$ of L. If E is any convex congruence on L, then

$$G_E = \{g \in G \mid xE(xg) \text{ for all } x \in L\}$$

is an l-ideal of G. Hence, for no proper convex congruence E is aEb, since otherwise, $f \in G_E$ and hence $G = G_E$, which contradicts the transitivity of G. It follows that the union of any tower of proper convex congruences on L is a proper convex congruence. By Zorn’s lemma, there is a maximal proper convex congruence M on L. The natural mapping induces a total order on $L' = L/M$. For $xM \in L'$ and $g \in G$, define $(xM)g = (xg)M$. Then G is a transitive o-primitive l-group of bounded automorphisms of L'.

Conversely, let G be a transitive o-primitive l-group of bounded automorphisms of an ordered set L. Let $\{1\} \neq N$ be an l-ideal of G. Define an equivalence relation E on L by: xEy if and only if there exists $1 < f \in N$ such that $x \leq yf$ and $y \leq xf$. Then it is easily verified
that E is a convex congruence. Since $N \neq \{1\}$, and for any $f \in N$, $x E(x f)$ for all $x \in L$, at least one E-class contains more than one point. Therefore, since G is o-primitive, there is just one E-class. Now let $1 < g \in G$. By assumption, the support of g lies in some interval $[a, b]$. Since $a \in b$, there exists $1 < f \in N$ such that $b \leq af$. Hence, for any $x \in [a, b]$, $xg \leq b \leq af \leq xf$. For any $x \in L \setminus [a, b]$, $xg = x \leq xf$. Thus, $g \leq f$, and as N is convex, $g \in N$. Therefore, $G = N$, and G is simple. Finally, by the lemma, every positive element of G is insular. This completes the proof of the theorem.

Corollary 1. If G is a simple l-group with an insular element, then every positive element of G is insular.

Corollary 2. If G is a simple l-group with an insular element, then for every $1 < g \in G$ there is an infinite collection of pairwise disjoint conjugates of g.

It is possible that the conclusion of Corollary 2 would follow from the weaker hypothesis that G be simple and not totally ordered. It can be shown, using results in [3] that any simple nontotally ordered l-group contains an infinite collection of pairwise disjoint elements.

We close this note with some examples. Let G be the l-group of all bounded automorphisms of the ordered set L. If G is o-doubly transitive in the sense that for any $a, b, c, d \in L$ with $a < b$ and $c < d$, there exists $g \in G$ such that $ag = c$ and $bg = d$, then clearly G is o-primitive on L. The following is also useful: If G is transitive on L and L is relatively complete, then G is o-primitive on L. For if E were a nontrivial convex congruence on L, then there would be some nontrivial E-class containing an end point; but then G could not be transitive on L.

In particular, if L is an ordered field, then the group of automorphisms of L is o-doubly transitive, and hence the l-group G of bounded automorphisms of L is simple. G is also simple if L is the long line, the inverted long line, or the double long line. A somewhat different example in which L is relatively complete and yet not locally isomorphic to the reals arises in the following way. Consider the field F of semi-infinite polynomials of the form $\sum_{i=0}^{\infty} r_{i}x^{i}$ with integer exponents and real coefficients, ordered lexicographically from the largest exponent. Then the l-group of automorphisms of F is o-doubly transitive. It follows that if $a_{1} < a_{2} < \cdots$ and $b_{1} < b_{2} < \cdots$ are bounded countable sequences of elements of F, then there is an automorphism of F which maps a_{i} onto b_{i} for each i. A similar statement holds for decreasing sequences. Now let L be the completion of F by Dedekind cuts. Every automorphism of F can be extended uniquely
to an automorphism of \(L \). Moreover, every element \(a \in L \) is the limit of two sequences \(\{ a_i \} \) and \(\{ b_i \} \) of elements of \(F \) such that

\[
a_1 < a_2 < \cdots < a < \cdots < b_2 < b_1.
\]

From this, it follows that the \(l \)-group \(G \) of bounded automorphisms of \(L \) is transitive on \(L \). Hence \(G \) is simple.

Finally, we give an example of a nontotally ordered simple \(l \)-group which does not contain an insular element. Let \(t \) be that automorphism of the real line \(R \) defined by \(xt = x + 1 \). Let \(G \) consist of all those automorphisms \(f \) of \(R \) such that \(tf = ft \) (\(f \) is “periodic”). Then \(G \) is a transitive sub-\(l \)-group of the \(l \)-group of all automorphisms of \(R \). To show that \(G \) is simple, let \(g \) and \(b \) be positive elements of \(G \). Then the support of \(g \) meets the interval \([0, 1] \), where 0 and 1 denote real numbers throughout the following argument. Hence for a finite number of conjugates \(g_1, g_2, \ldots, g_n \) of \(g \), the support of \(g^* = g_1 \cup g_2 \cup \cdots \cup g_n \) contains \([0, 1] \). Thus by periodicity \(g^* \) has no fixed points in \(R \). It follows that for some positive integer \(m \), \(1f < O(g^*)^m \). Therefore, for all \(x \in [0, 1] \),

\[
x f \leq 1f < O(g^*)^m \leq x(g^*)^m.
\]

By periodicity again, \(y f < y(g^*)^m \) for all \(y \in R \). That is, \(f < (g^*)^m \). Thus any \(l \)-ideal of \(G \) containing \(g \) also contains \(f \). Therefore, \(G \) is simple.

Clearly, \(G \) does not contain an element of bounded support, and therefore, no element of \(G \) is insular.

References

University of Chicago