Strong ratio limit property for $R$-recurrent Markov chains
HTML articles powered by AMS MathViewer
- by William E. Pruitt
- Proc. Amer. Math. Soc. 16 (1965), 196-200
- DOI: https://doi.org/10.1090/S0002-9939-1965-0174089-0
- PDF | Request permission
References
- Kai Lai Chung, Markov chains with stationary transition probabilities, Die Grundlehren der mathematischen Wissenschaften, Band 104, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0116388, DOI 10.1007/978-3-642-49686-8
- C. Derman, A solution to a set of fundamental equations in Markov chains, Proc. Amer. Math. Soc. 5 (1954), 332–334. MR 60757, DOI 10.1090/S0002-9939-1954-0060757-0
- William Feller, An Introduction to Probability Theory and Its Applications. Vol. I, John Wiley & Sons, Inc., New York, N.Y., 1950. MR 0038583
- A. M. Garsia, S. Orey, and E. Rodemich, Asymptotic behavior of successive coefficients of some power series, Illinois J. Math. 6 (1962), 620–629. MR 142947, DOI 10.1215/ijm/1255632709
- Samuel Karlin and James McGregor, Random walks, Illinois J. Math. 3 (1959), 66–81. MR 100927
- David G. Kendall, Unitary dilations of Markov transition operators, and the corresponding integral representations for transition-probability matrices, Probability and statistics: The Harald Cramér volume (edited by Ulf Grenander), Almqvist & Wiksell, Stockholm; John Wiley & Sons, New York, N.Y., 1959, pp. 139–161. MR 0116389
- Steven Orey, Strong ratio limit property, Bull. Amer. Math. Soc. 67 (1961), 571–574. MR 132600, DOI 10.1090/S0002-9904-1961-10694-0
- D. Vere-Jones, Geometric ergodicity in denumerable Markov chains, Quart. J. Math. Oxford Ser. (2) 13 (1962), 7–28. MR 141160, DOI 10.1093/qmath/13.1.7
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 16 (1965), 196-200
- MSC: Primary 60.65
- DOI: https://doi.org/10.1090/S0002-9939-1965-0174089-0
- MathSciNet review: 0174089