A NEW PROOF OF DEICKE’S THEOREM ON HOMOGENEOUS FUNCTIONS

F. BRICKELL

We denote by R_n the n-dimensional number space of points \{ x^1, x^2, \cdots, x^n \}, where the x^i are real numbers, and we use R'_n to denote R_n with the point \{ $0, 0, \cdots, 0$ \} removed. Let L be a positive function of class C^4 defined on R'_n and positively homogeneous of degree one. Then, introducing the matrix g of elements

$$g_{ij} = \frac{\partial^2(\frac{1}{2}L)}{\partial x^i \partial x^j},$$

we give a new proof of the following theorem, due originally to A. Deicke [1].

Theorem. Let $\det g$ be constant on R'_n. Then g is constant on R'_n.

It is known that the assumptions made imply that the matrix g is positive definite [1]. We first prove

Lemma 1. Let x, y be any two points in R'_n. Then $\operatorname{Tr} g^{-1}(x) g(y) \geq n$.

Proof. Since the matrices $g(x), g(y)$ are positive definite, the characteristic roots of $g(y)$ with respect to $g(x)$ are all positive. These roots are also the characteristic roots of the matrix $g^{-1}(x) g(y)$ so that, using the inequality between arithmetic and geometric means,

$$\operatorname{Tr} g^{-1}(x) g(y) \geq n(\det g^{-1}(x) g(y))^{1/n} = n.$$

We next introduce the elliptic differential operator

$$\Delta = \sum_{i,j=1}^{n} g^{ij} \frac{\partial^2}{\partial x^i \partial x^j},$$

where g^{ij} denotes the general element of the matrix $g^{-1}(x)$ and prove

Lemma 2. The matrix Δg is positive semi-definite.

Proof. Define a function ϕ_x by $\phi_x(y) = \operatorname{Tr} g^{-1}(x) g(y)$. Since $\phi_x(x) = n$, Lemma 1 shows that ϕ_x has a minimum at $y = x$ and hence the matrix of elements

Received by the editors September 28, 1963.

1 This research was supported by the National Science Foundation (G-24154).
\[
\frac{\partial^2 \phi_x}{\partial y^a \partial y^b}
\]
is positive semi-definite for \(y = x\). This matrix is also equal to \(\Delta g\) for \(y = x\).

We complete the proof of the theorem by using a theorem due to E. Hopf [2, Theorem 2.1]. Lemma 2 implies that, for each \(h\), \(\Delta g_{hh} \geq 0\). Since \(g_{hh}\) is positively homogeneous of degree zero and hence attains a maximum on \(R_n\), Hopf's theorem shows that \(g_{hh}\) is constant on \(R_n\). Lemma 2 now implies that \(\Delta g_{hh} = 0\) for all \(h, k\) and, as before, Hopf's theorem shows that \(g_{hh}\) is constant on \(R_n\).

The author wishes to thank Professor H. C. Wang for a simplification to a previous proof.

REFERENCES

1. A. Deicke, Über die Finsler-Räume mit \(A_i = 0\), Arch. Math. 4 (1953), 45-51.

NORTHWESTERN UNIVERSITY