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1. Introduction. Let (X, t) be a topological space and let S(X) be

the set of nonempty closed subsets of X. Endow S(X) with the

Vietoris finite topology [l]. A basic open set in this topology is a set

of the form

{Ul,  • •  • , Un)

= <A G S(X) :iCU   Ui and A f~\ Ui ̂  0 íor I ^ i ^ n\

where Ui, • • • , U„ are members of r. Let F: X—*Y be a set-valued

function on X into F such that F(x) is closed for each xG-Y. Then F

induces a single-valued function/: X^>S(Y) on X into S(Y) by f(x)

= F(x). Then F is continuous if and only if / is continuous with re-

spect to the finite topology for S(Y). Let S be a collection of subsets

of X. The set S generates a topology for X by: If A dX, a point

xG-Y is an S-limit point for A in case every open set containing x

contains a member of S which meets both {x} and A — {x} ; see

Young [2]. The topology generated by S is called the S-topology. We

shall obtain a generalization of a theorem of Young [2] on the con-

tinuity of functions'under changes of topology to include multi-

valued functions with each set F(x) finite. This result is then applied

to derive a fixed-point theorem for such functions.

In this paper we shall assume that all spaces are Hausdorff.

2. Finite-valued functions. A set-valued function F: X—>Y such

that for each xGY the set F(x) is finite is said to be finite-valued or

to have finite images. We let N(F(x)) denote the number of elements

in the set F(x).

In the following, S will designate a collection of subsets of X and

$' will designate a collection of subsets of X or Y, whichever is

appropriate.

First we state a lemma on the continuity of finite-valued functions.

The proof of this lemma follows directly from the definition of con-

tinuity and from the fact that we have assumed each space to be

Hausdorff.
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Lemma 1. Let F: X—+Y be a finite-valued function. Let x be any ele-

ment of X, with F(x) = {yx, ■ • ■ , yk}. Let Vx, • • • , Vk be any collec-

tion of disjoint open sets such that y¡G Vi for i= 1, • • • , k. Then F is

continuous at x if and only if there exists an open set U containing x

such that for all x'<EU,F(x')CULi V{and F(x')r\Vi^0,i=i, ■ ■ ■ ,k.

We shall use the following condition.

Condition I. Let S, S' be collections of subsets of X and Y, re-

spectively. Let A:X—>Y be any continuous finite-valued function.

If, for each S£S, there exists an n and subsets Ax, ■ ■ ■ , An of Y

such that (i) A(5)=^iW • • • \JAn, (ii) F(x)C\Ai^0, xES and
1 ̂ i^n, (iii) yx, y^CLAj, 1 ̂ j^n, implies there is an S'£S' such that

Ji, yiÇzS'QAj, then S and S' are said to satisfy Condition I.

Theorem 2. Let F:X-*Y be finite-valued and continuous with re-

spect to the original topologies. If S and S' satisfy Condition I and if S

is a base for the S-topology on X, then F is continuous with respect to

the S- and S'-topologies.

Proof. Let x0GX and let A(x0) = {yi, • ■ • , yk}. Let Vx, ■ ■ ■ , Vk

be disjoint S'-open subsets of yx, ■ ■ ■ , yk. Let V(, • • • , Vk be sub-

sets of yx, • • • , yk which are open in the original topology for Y with

ViC.V'. Since Vi is also S'-open, we may assume that V[C\V¡ = 0

if *Vj.
Further, since Uf,,. F¿CUf=1 VI and U*=x Vi is S'-open we may as-

sume that if S'GS', F(xo)r\S'^0, and S' CUF/, then 5' CUÎ-1 V*
Since A is continuous with respect to the original topologies, there

exists an open set U containing x0 such that A(l7)CUf_1 V' and

such that x'GU implies F(x')C\V'i^0, i^i^k. Let x0ESCU
(such an S exists since S is a basis for the S-topology and U is S-open).

Let F(S) =Ai\J • • • yJAn from Condition I. Then, if y», y'(EAj, there

is an S' such that yu y'ES'CAj but AjCU*i=i Vf Therefore Aj

CUf-i Vi. If Aj= {y}, then yGA(x0) CU^ V,. Thus F(S) CU?_, V{.
Finally, if x'ES, F(x')r\Vi^0 since A(x')fW/ ^0 and VI meets
only Vi. Thus by Lemma 1, A is S- and S'-continuous.

We next state necessary conditions for S to be a base for the

S-topology.

Definition 1. A collection S of subsets of X is called a basis set if

and only if (i) each open subset of X is the union of members of S;

(ii) S is closed under finite intersections; (iii) for each S£S there is

an open set U such that 5 is a maximal member of S contained in U.

Lemma 3. If S is a basis set, then S is a base for the S-topology.

Proof. First we show that each A in S is S-open. Let x^X and
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let V be the open set of (iii). Let U be an open set containing x; we

may assume that UC V. Let xGS' C U. Since S' C V and ST\S^0,
S' C.S and hence x is not a limit point of X — S. Thus 5 is open. Let

V be an S-open set and let xG V. Since x is not an S-limit point of

X— V, there exists an open set U containing x such that any member

of S which contains x and which is contained in U is contained in V.

By (i) at least one such S exists. Thus with (ii), S is a base for the

S-topology.

We also need the following lemma from [3].

Lemma 4. Let F: X—>F be continuous and finite-valued. If KQX is

connected, then F(K) has at most n components, where

n = min {N(F(x)):xEK}.

If C is a component of F(K), then F(x)í\C9¿0 for all x(E.K.

Following [4], a topological chain or, simply, chain is a compact

connected set which has exactly two non-cutpoints. These two points

are the endpoints of the chain. We denote a chain with endpoints

a, b by [a, b]. We will agree to consider a set of just one point a as a

chain, with notation [a, a]. A space in which any two distinct points

are the endpoints of at most one chain is called acyclic. A set in which

any two points are the endpoints of at least one chain is said to be

topologically chained or chained.

Definition 2. A space X is said to have chained components if and

only if for each xGX and each open set U containing x there is an

open set V such that xG FC U and the component of F containing x

is chained, or is {x\.

Lemma 5. Let F: X—>Y be continuous and finite-valued. Let Y have

chained components. If C is a topological chain in X, then the com-

ponents of F(C) are topologically chained subsets of Y.

Proof. Let C= [a, b]. Let ^ be the cutpoint order for C with a the

least element. We shall show that each member of F(C) is chained

to some member of F(a). Let Cx= {x^C: each y£zF(x) is chained

to a member of F(a)}. By convention, [x, x] is a chain, so aGCi.. Let

x0 = sup Cx. To see that x0GG, let vG^(xo) and let F be an open set

containing y such that the component K(y) of F which contains y

is chained and such that (F(xa)~ {y\)r\V = 0. Since F is continu-

ous, there is an x'GCsuch that a^x'<x0 and for x'<x<x0, F(x)C\V

9^0. Thus, by Lemma 4, F(x)(~\K(y)j¿0 and y is chained to a

member of F(a). On the other hand, if x0<&, there exists an x' such

that x0<x' £b and such that x0<x<x' implies that F(x)C~\K(y)9i0.

Then x'GG, contrary to the definition of x0.  Further, a slight
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modification of the above argument implies that if y(EF(a) and

xG [a, b], then there exists y'£F(x) such that y' is chained to y.

Similarly, if F is a metric space we have as a result of a lemma in

[3] that

Lemma 6. Let Y be a metric space and let C be an arc in X. If

F: X—*Y is a continuous, finite-valued function, then the components

of F(C) are arcwise connected.

A chain component of a set is a subset which is maximal with

respect to being chained. Let X be an acyclic space and let S be the

collection of chain components of open sets and let S' be the collec-

tion of chains of X together with the singletons. The topology gener-

ated by S is called the chain topology.

Lemma 7. The topologies generated by S and S' are equivalent and S

is a base for the chain topology.

Proof. That S and S' generate equivalent topologies is a direct

calculation. Further, S is a basis set and thus, by Lemma 3, S is a

base for the chain topology.

If X is an acyclic space, and if S and S' are as in Lemma 7, then

Lemmas 5 or 6 together with Lemma 7 and Theorem 2 give:

Theorem 8. Let (X, t) be an acyclic space with chained components.

Let S be the collection of chained components of open sets. If F: X-+X is

T-continuous, and finite-valued, then F is ^-continuous.

Theorem 9. Let (X, r) be an acyclic metric space. Let S be the collec-

tion of arcwise connected components of open sets. If F: X—*X is r-

continuous and finite-valued, then F is ^-continuous.

3. Fixed-point theorems. In this section we shall use Theorems 8

and 9 to obtain two generalizations of a fixed-point theorem of

Young [2].

First we need some results from [4]. An acyclic, chained space has

an inherent partial order which is obtained by selecting an arbitrary

point e as the minimal element and then x^y if and only if xG [e, y],

where [e, y] is the unique chain from e to y. This is the so-called cut-

point order. Let L(x) = {yGY: y¿x] and let M(x) = {yGY: xgy}.

A dendritic space is a connected, locally connected space in which

each two points can be separated by the omission of a third point.

Lemmas 10 and 11 below are from [4].
•

Lemma 10. ^4 necessary and sufficient condition that a locally con-

nected space be dendritic is that it admit a partial order satisfying
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(i) A(x) and M(x) are closed sets for each point x,

(ii) if x<y, then there exists z such that x<z and z<y,

(iii) for each x and y, the set L(x)f~\L(y) is nonempty, compact and

simply ordered,

(iv) for each x, the set M(x) — x is open.

Also we have:

Lemma 11. A necessary and sufficient condition that a Hausdorff

space X be acyclic and chained is that it be dendritic in its chain to-

pology.

Note that if X is a space in which every nest of arcs (or chains) is

contained in an arc (or chain), then X is necessarily acyclic.

Theorem 12a. The class of arcwise connected, metric spaces in which

every nest of arcs is contained in an arc has the fixed-point property for

finite-valued functions.

Theorem 12b. The class of topological spaces which are topologically

chained, have small chained components, and in which every nest of

chains is contained in a chain, has the fixed-point property for finite-

valued functions.

We shall prove 12a. A proof of 12b is then obtained by replacing

arcs by chains and using Theorem 8 rather than Theorem 9. We shall

also need the following lemma which can be proved in a straight-

forward way.

Lemma 13. Let X be an acyclic chained space with minimal element e.

Let \xa) be a net in [e, Xo] which converges to Xo. Let {ya} be a net such

that yasïx„ for each a. If {ya} converges to y0 in the chain topology,

then y0 ^ x0.

Proof of 12a. Let e be the minimal element of X in the cutpoint

order. Let A: X—*X be a continuous finite-valued function. By

Theorem 9, A is also continuous when X has the chain topology. De-

fine a family S by:
(i) S£S if and only if 5= [e, x'j for some ï'GI, and,

(ii) x£ [e, x'] implies there is a y£ A(x) such that y Six.

The family S is partially ordered by inclusion, and S=[e, e]

= {e}£S. Let So be a linearly ordered subfamily of S. Then by

hypothesis there exists an arc [e, x] such that Us0C [e, x\. Let x0 be

the l.u.b. of USo in [e, x]. We shall show that [e, x0]£S. For this it

suffices to show that there is a y£A(xo) such that x0^y. Let A(x0)

= {vu " - ' . Vk}- Let Vi, • • • , Vk be disjoint basic chain-open sub-
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sets ol yx, ■ ■ ■ , yic, respectively. We may assume that Xo$.F(x0) and

hence that x0GUj=i Vi- Let {xa} be a net in [e, Xo] such that {x„}

converges to x0, and xa<x0 for each a. Then for each a there is a

y<.GF(xa) such that xa^ya. We now assert that there is an i such that

the net [ya\ is frequently in every chain-open neighborhood (c-

neighborhood) of y,-. Suppose i = 1. Then there exists a subnet {ya>}

of {ya} which is eventually in every c-neighborhood of yx [5, p. 70].

Then, by Lemma 13, x0^yi. Consequently, each nest in S has an up-

per bound and by Zom's lemma there is a maximal element in S. Let

[e, xo] be a maximal element of S. Let y0ÇzF(xo)r\M(x0). Suppose

that Xo(£F(xo). Let (x0, 3»o) be the open arc from x0 to y a. Let x'

G(xo, y a). Then M(x') — x' is a chain open set containing y0. Hence,

by continuity of F, there exists an xx, Xo<xx<x', such that, for any

xG [xo, Xi], F(x)(~\(M(x') — x') 9^0. This contradicts the maximality

of [e, Xo]. Hence XoG-FXxo).

4. Functions with infinite images. In this section we briefly in-

vestigate the situation when F(x) may be an infinite set. First we

give an example which shows that the conclusion of Theorems 8 and

9 fails in this case.

Example 1. Let A be the graph of the curve of sin 7r/x, 0<x^1.

Let B be the segment of the y-axis between y= — 2 and y= +1. Let

C be the horizontal line segment from (0, —2) to (1, —2), and let D

be the vertical segment from (1, —2) to (1, 0). Finally let X = AKJB

VJCVJD. To define the function we wish, we shall need additional

notation.

Let Bx= {(0, y): -láyál}; let D„ = D-{(1, 0)}, and denote a

member of X by x= (a, b).

Let A(a) be the portion of A to the left of the line x = a. Then, for

xG^o, define F(x) = A(\b\/2)VJBx, and define F(l,0)=Bx. For x<=A

and l/2ga^l, set

F(x) = {(0, y): -1 - 2(1 - a) £ y Û 1 - 4(1 - a)}

and

F(x) - {(0, y): -2 á y á - 1 - 2(1/2 - a)}

if 0<a^l/2. For xG-Bi set F(x) = {(0, -2)} and for x£B-Bx set

F(x) = {(|l + Z>|, -2)}. For x G C and 0 ^ a Ú 1/2 set F(x)

= {(1, — 2+4a)}. Let A(a)~ be the intersection of A with the verti-

cal strip determined by the lines x = 1 and x = a. Then for x^C and

l/2gx<lset F(x) = .4(2(1-a))~.
Then F is continuous and has compact connected images. (In fact

we could have, with more complication in notation, had F(x) an arc
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for each x.) But A is not continuous in the chain topology since any

sequence in D which converges to (1, 0) has images that do not con-

verge to the image of A(l, 0) in the chain topology.

With one change the condition given by Connell [ó] can be shown

to be a sufficient condition for the preservation of continuity of

arbitrary multi-valued functions.

Theorem 14. Let rx and t2 be two Hausdorff topologies for a set X.

Suppose that r2 is normal, that t2Ct"i, and that the closure of any rx-open

set is the same in each topology. Then, any function which is continuous

with respect to rx is continuous with respect to t2.

Proof. Let A: X-+X be a n-continuous function on X into X. Let

/: X—*S(X) be the map induced by A. Let Ai and A2 be the finite

topologies for S(X) generated by r- and r2, respectively. Let x£X and

let V be a A2-open subset containing/(x). Since r2 is a normal topol-

ogy, the topology A2 is regular [l, Theorem 4.9.5]. Thus let TJjC'Ui

C.V in A2. Since t2Cti, A2CA11 thus Vx is ri-open and hence f_1(Vi)

is Ti-open. Set U=f~1(Vi). Then the closure of U is the same in tx

and T2, denote this by U~, and let U denote the complement of

the closure and so forth. Then xG U~~~~ C U~~ and U is open

in tx and in t2. Furthermore, the Ai-closure (VrTl) of Vx is contained

in the A2-closure (TJrr») of Vx. Thus f-^Vi)-** =f-1Wn CtK'0~Tl)

CtKvrT*).
Hence f-l(Vx)-CtKVrT2). Then

f(u—~) Cf(U) =f(f-Ki)v-)CvrTtCX).

Thus / is A2-continuous and hence A is r2-continuous.
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