Distribution proof of Wiener’s Tauberian theorem
HTML articles powered by AMS MathViewer
- by Jacob Korevaar
- Proc. Amer. Math. Soc. 16 (1965), 353-355
- DOI: https://doi.org/10.1090/S0002-9939-1965-0176271-5
- PDF | Request permission
References
- Arne Beurling, Un théorème sur les fonctions bornées et uniformément continues sur l’axe réel, Acta Math. 77 (1945), 127–136 (French). MR 12701, DOI 10.1007/BF02392224
- Arne Beurling, Sur une classe de fonctions presque-périodiques, C. R. Acad. Sci. Paris 225 (1947), 326–328 (French). MR 21146 J. Korevaar, Fourier transforms of generalized functions, Symposium on Harmonic Analysis and Related Integral Transforms, Cornell University, Ithaca, N. Y., 1956. H. R. Pitt, General Tauberian theorems, Proc. London Math. Soc. (2) 44 (1938), 243-288.
- H. R. Pitt, Tauberian theorems, Tata Institute of Fundamental Research, Monographs on Mathematics and Physics, vol. 2, Oxford University Press, London, 1958. MR 0106376
- L. Schwartz, Théorie des distributions. Tome I, Publ. Inst. Math. Univ. Strasbourg, vol. 9, Hermann & Cie, Paris, 1950 (French). MR 0035918
- Norbert Wiener, Tauberian theorems, Ann. of Math. (2) 33 (1932), no. 1, 1–100. MR 1503035, DOI 10.2307/1968102 —, The Fourier integral and certain of its applications, Cambridge Univ. Press, Cambridge, 1933.
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 16 (1965), 353-355
- MSC: Primary 40.42
- DOI: https://doi.org/10.1090/S0002-9939-1965-0176271-5
- MathSciNet review: 0176271