AN L_p THEORY FOR A MARKOV PROCESS WITH A SUB-INARIANT MEASURE

S. R. FOGUEL

Let a Markov process be given by its transition probability. If the process has a sub-invariant measure then it defines an operator (or a semigroup of operators) on L_p, $1 \leq p \leq \infty$. Using this representation we study:

1. The behaviour of $P^n(x, A)$ as $n \to \infty$.
2. Continuity and differentiability properties of $P_t(x, A)$.

(The notation is explained below.)

Kendall in [6] and [7] uses a similar method in the case where the state space is discrete and the process irreducible. Instead of irreducibility we assume a "Doeblin condition" and we do not restrict the state space. In [1], [2] and [3] the same problems were studied. In this paper we do not assume that the measure is invariant but only sub-invariant (this idea was employed in Kendall [6], [7]). Also we do not assume that the process is "honest"; we have $P(x, X) \leq 1$ instead of equality.

1. Definitions and notation. Let (X, Σ, μ) be a measure space (the State Space) where $\mu \geq 0$ but is not necessarily finite. Let $P(x, A)$ be a transition probability:

(a) $P(x, A)$ is defined for $x \in X$ and $A \in \Sigma$ and $0 \leq P(x, A) \leq 1$.
(b) For a fixed x the function $P(x, \cdot)$ is a measure on Σ.
(c) For a fixed $A \in \Sigma$ the function $P(\cdot, A)$ is measurable.

The measure μ is assumed to satisfy

$$\mu(A) \geq \int P(x, A) \mu(dx).$$

(The measure μ is sub-invariant.)

Let

$$(Pf)(x) = \int f(y) P(x, dy).$$

Now if $f = \sum c_i I(A_i)$, where $I(A)$ denotes the characteristic function of A, and $\mu(A_i) < \infty$, then:

Received by the editors October 26, 1963.

1 This work was partially supported by NSF Grants GP87 and G14736 at Northwestern University.
The above argument shows that, on $L_1(X, \Sigma, \mu)$,

$$\|P\|_1 \leq 1.$$

Since, clearly, $\|P\|_\infty \leq 1$ we can use the Riesz Convexity Theorem to conclude:

For every $1 \leq p \leq \infty$ the operator P on $L_p(X, \Sigma, \mu)$ has norm less than or equal to one.

For our first problem the case $p = 2$ will be important. We shall use the following theorems on L_2.

Let

$$H_0 = \{f \mid f \in L_2 \text{ and weak lim } P^nf = 0\}.$$

$$H_1 = H_0^\perp.$$

$$K = \{f \mid f \in L_2 \text{ and } \|P^nf\| = \|P^*nf\| = \|f\| \text{ for all } n\}.$$

Theorem 1.1. The sets H_0, H_1 and K are subspaces invariant under P and P^*. The restriction of P to K is unitary and $H_1 \subset K$. The subspace K is of the form $L_2(X, \Sigma_1, \mu)$ where Σ_1 is a σ-subfield of Σ. If $\sigma \in \Sigma_1$ then $P(\sigma) = I(\tau)$ where $\tau \in \Sigma_1$ and P is an automorphism of Σ_1.

Proof. This theorem follows from Theorem 1.1 of [5] and Theorem 2 of [4]. We have only to show that P^* satisfies Condition 3 of Definition 1 of [4]. Let $f \in L_2$ and $f \leq c$. Let A be any set of finite measure, then

$$\int_A P^*f \, d\mu = \int f P(I(A)) \, d\mu \leq c \int P(x, A) \mu(dx) \leq c \mu(A).$$

Thus

$$P^*f \leq c \text{ a.e.}$$

Lemma 1.2. Let H be a Hilbert space and T an operator on H with $\|T\| \leq 1$. For any $x \in H$:

$$\text{weak lim } T^nx = 0 \text{ if } (T^nx, x) \to 0 \text{ for some } k.$$

((x, y) denotes the inner product in H.)

Proof. If $((T^k)x, x) \to 0$, then by Theorem 3.1 of [5], weak lim$_{n \to \infty} (T^k)x = 0$. But then also
weak lim \(T^d T^{k_n} x = 0 \), \(d = 0, 1, \ldots, k - 1 \).

Remark. If \(\lambda \) is a finite positive measure on \([0, 2\pi]\) and \(c_n \) are its Fourier coefficients, then the lemma implies: \(c_{k_n} \to 0 \) iff \(c_n \to 0 \).

2. **Convergence of** \(P_n(x, A) \) as \(n \to \infty \). Let \(P_n(x, A) \) be defined as usual; then

\[
(P^nf)(x) = \int f(y) P^n(x, dy).
\]

Theorem 2.1. Let \(A \) be a set of finite measure. If, for some integer \(k \), the sequence \(P^{kn}(x, A) \) converges in measure, on \(A \), to zero, then \(P^n(x, A) \) converges in measure to zero, on every set of finite measure.

Proof. Our assumption implies

\[
\int_A P^{kn}(x, A) \mu(dx) \to 0.
\]

Thus, by Lemma 1.2, the sequences \(P^n(x, A) = P^n(I(A)) \) converge weakly, in the \(L_2 \) sense, to zero. Since \(P^n(x, A) \geq 0 \) this is the same as:

The sequence \(P^n(x, A) \) converges in measure, on every set of finite measure, to zero.

If one studies the transition probability on \((X, \Sigma, \mu)\), then, since \(P \) is an automorphism on \(\Sigma \), we have:

(d) For any \(A \in \Sigma \) there exist two sets \(B \) and \(C \) in \(\Sigma \) such that

\[
P(x, A) = 1 \text{ if } x \in B, \quad P(x, A) = 0 \text{ if } x \in B \text{ a.e.}
\]

\[
P(x, C) = 1 \text{ if } x \in A, \quad P(x, C) = 0 \text{ if } x \in A \text{ a.e.}
\]

The process on \((X, \Sigma, \mu)\) is a Deterministic Process: \(P^n(x, A) \) is either zero or one, a.e., for every \(x \in X \) and \(A \in \Sigma \).

Let

\[
X_0 = \{ x \mid P(x, X) < 1 \}.
\]

Lemma 2.2. If \(B \subset X_0 \) and \(A \in \Sigma \) then \(\mu(B \cap A) = 0 \).

Proof. By condition (d),

\[
I(A) = P(x, C).
\]

Thus, if \(x \in A \),

\[
P(x, X) \geq P(x, C) = 1 \text{ a.e. or a.e. } x \in B.
\]

Theorem 2.3. Let \(B \) be a set of finite measure such that if \(A \in \Sigma \) then \(\mu(B \cap A) = 0 \). Then
lim in measure of $P^n(x, B) = 0$ on every set of finite measure.

Proof. Since $I(B)$ is orthogonal to K then, by Theorem 1.1, $I(B) \subset H_1 = H_0$.

We shall assume in the rest of this section that a "Doeblin Condition" holds, namely: there exists a positive measure λ, on Σ, and an $\epsilon > 0$ such that:

1. If $\mu(A) < \infty$ then $\lambda(A) < \infty$.
2. If $\lambda(A) < \epsilon$ then for some n, $P^n(x, A) < 1$ for all $x \in X$.

This kind of condition was used in [3]. If the state space X is discrete, then by taking λ to be the number of points in the set and $\epsilon = 1/2$ we see that the condition is trivially satisfied.

Lemma 2.4. The σ-field Σ_1 is generated by a collection of disjoint sets $\{\sigma_\alpha\}$.

Proof. It is enough to show that if $A \in \Sigma_1$ then it contains an atom of Σ_1. Now if A contains k disjoint sets of Σ_1 then $\epsilon \leq \lambda(A)/k$ since every set in Σ_1 must have a λ-measure greater than ϵ. Thus the number of sets contained in A is smaller than $\lambda(A)/\epsilon$.

The operator P permutes the sets σ_α. Let us write $P^n\sigma_\alpha$ for the set whose characteristic function is $P^n(I(\sigma_\alpha))$. For each σ_α there are two possibilities:

1. The set σ_α is cyclic: for some $k(\alpha)$, $P^{k(\alpha)}\sigma_\alpha = \sigma_\alpha$.
2. The sets $P^n\sigma_\alpha$ are disjoint.

(We used here the fact that

$$\mu(P^n\sigma_\alpha \cap P^k\sigma_\alpha) = \mu(P^{n-k}\sigma_\alpha \cap \sigma_\alpha)$$

which holds since P is unitary on K.)

Theorem 2.5. Let $A \in \Sigma$.

(a) If $A \cap \sigma_\alpha = \emptyset$ for every α then the sequence $P^n(x, A)$ tends, in measure, to zero, on every set of finite measure.

(b) If $A \subset \sigma_\alpha$ where σ_α is not cyclic then the sequence $P^n(x, A)$ tends, in measure, to zero, on every set of finite measure.

(c) If $A \subset \sigma_\alpha$ and $P^n\sigma_\alpha = \sigma_\alpha$ and B is a set of finite measure then:

$$\lim_{n \to \infty} \int_B P^{nk+d}(x, A) \mu(dx) = \mu(\sigma_\alpha)^{-1} \mu(B \cap P^d\sigma_\alpha),$$

$$d = 0, 1, \ldots, k - 1.$$

Proof. Case (a) was proved in Theorem 2.3. Case (b): Since the sets $P^n(\sigma_\alpha)$ are disjoint and

$$P^n(x, \sigma_\alpha) \leq P^n(x, \sigma_\alpha) = I(P^n(\sigma_\alpha)),$$
the sequence $P^n(x, A)$ tends weakly, in the sense of L_2, to zero, which implies (b). Case (c): Note that

$$I(A) = \frac{\mu(A)}{\mu(\sigma_u)} I(\sigma_u) + f,$$

where f has its support in σ_u and is orthogonal (in L_2) to $I(\sigma_u)$. Thus f is orthogonal to K and weak lim $P^n f = 0$ by Theorem 1.1. On the other hand,

$$P^n k + d I(\sigma_u) = I(P^n \sigma_u).$$

Thus

$$\int_B P^{n_k + d}(x, A) \mu(dx) = \frac{\mu(A)}{\mu(\sigma_u)} \mu(B \cap P^n \sigma_u) + \int_B P^{n_k + d} d \mu$$

and

$$\int_B P^{n_k + d} d \mu \rightarrow 0.$$

3. Markov process with continuous time parameter. Let the transition probability be $P_t(x, A)$, $0 \leq t$, where $P_t(x, A)$ satisfies conditions (a), (b) and (c) of the introduction and the Chapman-Kolmogoroff Equation:

$$P_{t+s}(x, A) = \int P_t(x, dy) P_s(y, A).$$

We shall replace equation (1.1) by

$$(3.1) \mu(A) \geq \int P_t(x, A) \mu(dx), \quad t \geq 0.$$

It is easily seen that the transition probability will define a semigroup of contractions on L_p, $1 \leq p \leq \infty$, by

$$(P_t f)(x) = \int f(y) P_t(x, dy).$$

We shall study in this section continuity and differentiability properties of the semigroup P_t.

Let us assume that $P_0(x, A) = I(A)(x)$.

If $\mu(A) < \infty$ and $P_t I(A) = P_t(x, A)$ is continuous in the L_p topology for $1 \leq p < \infty$, then

$$(3.2) \int_A P_t(x, A) \mu(dx) \rightarrow \mu(A),$$
since $I(A) \in L_q$ where $1/p + 1/q = 1$. Conversely, if (3.2) holds then

$$\|P_t(x, A) - I(A)\|^p = \int |P_t(x, A) - I(A)|^p d\mu \leq \int |P_t(x, A) - I(A)| d\mu,$$

since $0 \leq P_t(x, A) \leq 1$. Thus

$$\|P_t(x, A) - I(A)\|^p \leq \int_A (1 - P_t(x, A)) d\mu + \int_{X-A} P_t(x, A) d\mu = \mu(A) - \int_A P_t(x, A) d\mu + \int_{X-A} P_t(x, A) d\mu.$$

Now

$$\int_A P_t(x, A) d\mu + \int_{X-A} P_t(x, A) d\mu = \int_P P_t(x, A) d\mu \leq \mu(A).$$

Thus

$$\|P_t(x, A) - I(A)\|^p \leq 2(\mu(A) - \int_A P_t(x, A) \mu(dx)).$$

We shall assume that (3.2) holds for every set $A \in \Sigma$ with $\mu(A) < \infty$, and thus the semigroup P_t is strongly continuous for $1 \leq p < \infty$ and $t \geq 0$.

Note that if the process was given by the functions x_1 then

$$\int_A P_t(x, A) \mu(dx) = \text{Probability}(x_1 \in A \cap x_0 \in A).$$

If $P_t(x, A)$ is strongly differentiable for $t=0$ in the L_p sense $1 \leq p < \infty$, then

$$\frac{1}{t} \left(\mu(A) - \int_A P_t(x, A) \mu(dx) \right) = \frac{1}{t} \int_A (I(A) - P_t(x, A)) \mu(dx)$$

would be bounded since $I(A) \in L_q$ $(1/p + 1/q = 1)$.

If one assumes that

$$t^{-p} \left[\mu(A) - \int_A P_t(x, A) \mu(dx) \right], \quad p > 1,$$

is bounded, then, by (3.3), the quotient

$$t^{-1}(P_t(x, A) - I(A))$$
is bounded in the L_p norm. But L_p is a reflexive space and boundedness implies differentiability. In this case it is easy to see that
\[
\frac{d}{dt} \int_A P_t(x, A) \mu(dx) \bigg|_{t=0} = 0,
\]
\[
\frac{d}{dt} \int_B P_t(x, A) \mu(dx) \bigg|_{t=0} = 0 \quad \text{if } B \subset X - A.
\]

We do not get any information on $(d/dt)\int_B P_t(x, A) \mu(dx)$, $B \subset A$.

Definition. Let $D^* \subset L_\infty(X, \Sigma, \mu) = L^*_\infty$ be the set
\[
\{ f \ | \ f \in L_\infty \text{ and } \lim\| P_t^* f - f \|_\infty = 0 \}.
\]

Theorem 3.1. The set D^* is a closed subspace of L_∞, invariant under P_t^*. For every $g \in L_1$,
\[
\| g \|_1 = \sup \left\{ \left| \int g f \mu \right| \ | f \in D^* \text{ and } \| f \|_\infty = 1 \right\}.
\]

This theorem is a consequence of Theorems 2.1, 2.2 and 3.1 of [8].

Throughout the rest of this paper A will denote a fixed set of finite measure such that
\[
i(A) - \int P_t(x, A) \mu(dx)\]

is bounded.

Theorem 3.2. If $f \in D^*$, then the function $\int f(x) P_t(x, A) \mu(dx)$ is differentiable for every $t \geq 0$.

Proof. Since $P_t^* f \in D^*$ it is enough to prove differentiability at $t=0$. Now, by semigroup theory, the function $P_t^* g$ is strongly differentiable on a dense subset of D^*. On the other hand, for any h with $\| h \|_\infty \leq 1$,
\[
t^{-1} \left| \int h(x) P_t(x, A) \mu(dx) - \int_A h(x) \mu(dx) \right|
\leq t^{-1} \left(\mu(A) - \int A P_t(x, A) \mu(dx) \right).
\]

Thus the quotient
\[
t^{-1} \left(\int h(x) P_t(x, A) \mu(dx) - \int_A h(x) \mu(dx) \right)
\]
is uniformly bounded on $\|k\|_{\infty} \leq 1$ and tends to a limit on a dense subset on D^*. Thus the limit exists for every $f \in D^*$.

Let $\Gamma \subseteq \Sigma$ be such that every set in Γ has a finite measure, and every set of finite measure, in Σ, is a countable union of sets in Γ.

Let $f \in L_\infty$:

$$\|P_t f - f\| = \sup \left\{ \mu(B)^{-1} \left| \int_B (P_t f - f) \, d\mu \right| \mid B \subseteq \Gamma \right\}$$

$$= \sup \left\{ \mu(B)^{-1} \left| \int f(x) (P_t(x, B) - I(B)) \mu(dx) \right| \mid B \subseteq \Gamma \right\}.$$

In particular, $I(C) \in D^*$ if

$$\sup \left\{ \mu(B)^{-1} \int_C P_t(x, B) \mu(dx) \mid B \subseteq \Gamma \text{ and } B \cap C = \emptyset \right\} \to 0, \quad t \to 0,$$

and

$$\sup \left\{ (1 - \mu(B)^{-1}) \int_C P_t(x, B) \mu(dx) \mid B \subseteq \Gamma \text{ and } B \subset C \right\} \to 0, \quad t \to 0.$$

For a discrete process this implies $P_t(i, j)$ is differentiable for $t \geq 0$ if

$$t \to (1 - P_t(j, j))$$

is bounded and

$$\sup \left\{ \mu_k^{-1} \mu_t(i, k) \mid k, k \neq i \right\} \to 0, \quad t \to 0,$$

where μ_k is the sub-invariant measure.

For our last result we shall need the notation of [3]. Let us add the assumptions:

$$P(x, X) = 1 \quad \text{for all } x \in X,$$

$$\mu(A) = \int P_t(x, A) \mu(dx).$$

One can define a measure space (Ω, T, ν) and a class of measurable functions x_t on Ω to X, where $t \geq 0$, such that: If $T(t)$ is given by

$$T(t)f(x_0(\omega)) = f(x_t(\omega)),$$

E_0 is the self-adjoint projection, in $L_2(\Omega, T, \nu)$, on $L_2(\Omega, \nu_0^{-1}(\Sigma), \nu)$, then:
\[\mu(A) = \nu(x_0^{-1}(A)), \]
\[E_0 T(t) I(x_0 \in A)(\omega) = P_t(x_0(\omega), A), \]
\[E_0 T(t)f(x_0(\cdot))(\omega) = \int f(y) P_t(x_0(\omega), dy). \]

Theorem 3.3. Let \(f \in L_1(\mu) \cap L_\infty(\mu) \) be such that
\[\|f(x(\omega)) - f(x_0(\omega))\|_\infty \to 0, \quad t \to 0; \]
then
\[\int f(y) P_t(y, A) \mu(dy) \]
is differentiable for \(t \geq 0 \).

Proof. It is enough to show that \(f \in D^* \). Now for every \(g \in L_1(\nu) \cap L_\infty(\nu) \),
\[(E_0 T(t))^* g = T(t)^{-1} E(t) g, \]
where \(E(t) \) is the self-adjoint projection on \(L_2(\Omega, x_t^{-1}(\Sigma), \nu) \) (see Theorem 1.1 of \[2\]). Thus
\[\| (E_0 T(t))^* f(x_0(\omega)) - f(x_0(\omega)) \|_\infty = \| T(t)^{-1} (E(t)f(x_0(\omega)) - T(t)f(x_0(\omega))) \|_\infty. \]
But \(T(t)^{-1} \) is an isometry on \(L_\infty \); thus
\[\| (E_0 T(t))^* f(x_0(\omega)) - f(x_0(\omega)) \|_\infty = \| E(t)(f(x_0(\omega)) - T(t)f(x_0(\omega))) \|_\infty \leq \| f(x_0(\omega)) - f(x_t(\omega)) \|_\infty. \]

Bibliography

Northwestern University and Hebrew University, Jerusalem, Israel