A locally compact metric space is almost invariant under a closed mapping
HTML articles powered by AMS MathViewer
- by Edwin Duda
- Proc. Amer. Math. Soc. 16 (1965), 473-475
- DOI: https://doi.org/10.1090/S0002-9939-1965-0184201-5
- PDF | Request permission
References
- G. T. Whyburn, Open and closed mappings, Duke Math. J. 17 (1950), 69–74. MR 31713
- I. A. Vaiĭnšteĭn, On closed mappings of metric spaces, Doklady Akad. Nauk SSSR (N.S.) 57 (1947), 319–321 (Russian). MR 0022067
- A. D. Wallace, Some characterizations of interior transformations, Amer. J. Math. 61 (1939), 757–763. MR 179, DOI 10.2307/2371332
- A. H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc. 7 (1956), 690–700. MR 87078, DOI 10.1090/S0002-9939-1956-0087078-6
- E. Michael, Another note on paracompact spaces, Proc. Amer. Math. Soc. 8 (1957), 822–828. MR 87079, DOI 10.1090/S0002-9939-1957-0087079-9
- G. T. Whyburn, Continuous decompositions, Amer. J. Math. 71 (1949), 218–226. MR 27507, DOI 10.2307/2372107
- V. K. Balachandran, A mapping theorem for metric spaces, Duke Math. J. 22 (1955), 461–464. MR 73157
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 16 (1965), 473-475
- MSC: Primary 54.60
- DOI: https://doi.org/10.1090/S0002-9939-1965-0184201-5
- MathSciNet review: 0184201