A CLASS OF RIEMANN SURFACES

THOMAS A. ATCHISON

In this paper, a class of open simply connected Riemann surfaces is considered and the uniformizing function and its derivative are exhibited in an infinite product representation. An infinite product of the form of the uniformizing function is then shown to produce a surface of this class.

Definition of the class of surfaces. Let \(\{a_n\}_{n=1}^\infty, \{b_{2n-2}\}_{n=1}^\infty, \) and \(\{\beta_{3n-1}\}_{n=1}^\infty \) be three sequences of real numbers such that for every positive integer \(n, A_n > 0, b_{2n-2} > 0, \) and \(b_{3n-1} > 0; 0 < a_{2n-2} < b_{2n-2}; \) and \(0 < a_{3n-1} < b_{3n-1}. \) For each sheet, a copy of the Riemann sphere, let a surface \(F \) consist of sheets \(S_1, S_2, \ldots, \) over the Riemann sphere such that

1. \(S_1 \) is slit from \(a_1 \) to \(b_1, \)
2. for \(n \) odd, \(S_{2n-1} \) is slit from \(-b_{2n-2} \) to \(-a_{2n-1} \) and from \(a_{2n-2} \) to \(b_{2n-1}; \)
3. for \(n \) even, \(S_{2n-2} \) is slit from \(-b_{2n-2} \) to \(-a_{2n-1} \) and from \(a_{2n-2} \) to \(b_{2n-1}, \)
4. for \(n \) odd, \(S_{3n} \) is slit from \(-b_{3n-1} \) to \(-a_{3n-1} \) and from \(a_{3n-1} \) to \(+\infty; \)
5. for \(n \) even, \(S_{3n} \) is slit from \(-\infty \) to \(-a_{3n} \) and from \(a_{3n} \) to \(b_{3n-1}, \)
6. \(S_n \) is joined to \(S_{n+1} \) by connecting the slits which have one endpoint at \(\pm a_n \) to form first-order branch points at the endpoints of the slits.

The uniformizing function. \(F \) is simply connected and open, hence by the General Uniformization Theorem, there exists a unique function \(\phi \) such that \(\phi \) maps \(F \) one-one and conformally onto \(\{z \mid |z| < R \leq \infty \}, \) where for \(w = f(z) = \phi^{-1}(z), f(0) = 0 \in S_1, \) and \(f'(0) = 1. \)

Let \(\alpha_i \) denote the zeros of \(f'(z) \) corresponding to the first order branch points over \((-1)^{i+1}a_i, \) while \(-\beta_{3i-2} \) and \(-\beta_{3i-1} \) denote the zeros of \(f'(z) \) corresponding to the first-order branch points over \((-1)^{i+1}b_{3i-2} \) and \((-1)^i\beta_{3i-1}, \) respectively. Let \(f(\beta_i) = 0 \in S_i \) for \(i = 2, 3, \ldots, \) let \(f(\gamma_{3i}) = \infty, \) a first-order branch point over \(\infty \) on \(S_{3i}, \) and \(S_{3i+1}, \) let \(f(\gamma_{3i+1}) = \infty \in S_{3i+1}, \) and let \(f(\gamma_{3i-1}) = \infty \in S_{3i-1}. \)

Received by the editors November 16, 1963 and, in revised form, April 13, 1964.

1 This is a condensation of the author's doctoral dissertation written at The University of Texas under the direction of Professor H. B. Curtis, Jr.
Lemma 1. \(f \) is real for real \(z \), and for \(k \geq 1 \),
\[
0 < \alpha_k < \delta_{k+1} < \alpha_{k+1}
\]
and
\[
0 > -\gamma_1 > -\beta_{2k-2} > -\gamma_{2k-1} > -\beta_{2k-1} > -\gamma_{2k} > -\beta_{2k+1}.
\]

Proof. The argument is essentially the same as that of [3, pp. 511–512].

Lemma 2. For each positive integer \(n \), let \(F_n \) be the first \(3n+3 \) sheets of \(F \) with the slit from \(-(1)^{n}a_{3n+3} \) to \(-(1)^{n}\infty \) deleted. Then there exists a rational function which maps the \(z \)-plane onto \(F_n \).

Proof. \(F_n \) is a simply connected closed surface with branch points over \(\alpha_1, -\alpha_2, \ldots, -(1)^{n+1}a_{3n+3}, b_1, -b_2, \ldots, -(1)^{n+1}b_{3n+2} \) and with \(n \) branch points over \(\infty \). \(F_n \) has \(3n+3 \) points over the origin and \(n+3 \) points over \(\infty \) which are not branch points. Then \(F_n \) is the Riemann surface of the inverse of a unique rational function, \(w = R_n(z) \), such that \(R_n(0) = 0 \in S_1, R'_n(0) = 1 \), and \(R_n(\infty) = \infty \in S_{3n+3} \). If \(R_n(\delta_{k,n}) = 0 \in S_k \) for \(2 \leq k \leq 3n+3 \); \(R_n(-\gamma_1,n) = \infty \in S_1 \), \(R_n(-\gamma_{2k-1},n) = \infty \in S_{3k-1} \), \(R_n(-\gamma_{2k+1},n) = \infty \in S_{3k+1} \) for \(1 \leq k \leq n \); \(R'_n(\alpha_k,n) = 0 \) for \(1 \leq k \leq 3n+2 \); \(R'_n(-\beta_{2k-1},n) = 0 \) for \(1 \leq k \leq n+1 \); and \(R'_n(-\beta_{2k+1},n) = 0 \) for \(1 \leq k \leq n+1 \), then
\[
R_n(z) = \frac{z}{\gamma_{1,n}^*} \prod_{k=1}^{n} \frac{(\delta_{2k-1,n}^*)(\delta_{2k+1,n}^*)(\delta_{3n+3,n}^*)}{(\gamma_{3k-1,n}^*)(\gamma_{3k,n}^*)^2}
\]
and
\[
R'_n(z) = \frac{1}{(\gamma_{1,n}^*)^2} \prod_{k=1}^{n+1} \prod_{k=1}^{n} \frac{(\alpha_k,n)^*}{(\beta_{3k-1,n}^*)} \prod_{k=1}^{n} \frac{(\delta_{3k+1,n}^*)}{(\gamma_{3k,n}^*)^3}
\]
where \(\delta_{j,n}^* = 1 - z/\delta_{j,n} \), \(\gamma_{j,n}^* = 1 + z/\gamma_{j,n} \), \(\alpha_{j,n}^* = 1 - z/\alpha_{j,n} \) and \(\beta_{j,n}^* = 1 + z/\beta_{j,n} \).

Lemma 3. \(F \) is parabolic.

Proof. Let \(D_n \) be the \(z \)-plane slit along the real axis from \(\alpha_{3n+2,n} \) to \(\infty \). Then \(D_n \) is mapped by \(w = R_n(z) \) onto \(F_n \) with the sheet \(S_{3n+1} \) slit from \(-(1)^{n+1}a_{3n+3} \) to \(-(1)^n\infty \) along the real axis. But \(\xi = \phi(w) \) maps this cut surface one-to-one on the domain \(\Delta_n \) of the \(\xi \)-plane bounded by the curve \(C_{3n+2} \) and the segment \((\alpha_{3n+2}, \alpha_{3n+3}) \) and con-
A CLASS OF RIEMANN SURFACES 733

taining \(\zeta = 0 \). Thus \(\zeta = \phi[R_n(z)] = \psi_n(z) \) provides a schlicht map of \(D_n \)
onto \(\Delta_n \) with \(\psi_n(0) = 0 \) and \(\psi_n'(0) = 1 \). As in the argument of [6, p. 55],
the distance from \(\zeta = 0 \) to the curve \(C_{3n+2} \) is greater than \(\alpha_{3n+2, n} \).

For \(0 < z < \alpha_{1, n} \),

\[
\frac{1}{\gamma_{1, n}^*} \prod_{k=1}^{n+1} \beta_{2k-2, n}^* < 1, \quad \prod_{k=1}^{n+1} \gamma_{2k-1, n}^* > 1, \quad \prod_{k=1}^{n} (\gamma_{3k, n})^2 > 1,
\]

and

\[
\prod_{k=1}^{3n+2} \alpha_{k, n}^* > 0.
\]

Thus, if

\[
\frac{1}{\alpha_{3n+2}^*} = \frac{1}{3n+2} \sum_{k=1}^{3n+2} \frac{1}{\alpha_{k, n}^*},
\]

then

\[
0 < R_n'(z) < \prod_{k=1}^{3n+2} \alpha_{k, n}^* \leq \left[\frac{1}{3n+2} \sum_{k=1}^{3n+2} \alpha_{k, n}^* \right]^{3n+2} = (1 - z/\alpha_{3n+2})^{3n+2}.
\]

Hence,

\[
a_1 = \int_0^{a_{1, n}} R_n'(z)dz < \int_0^{a_{1, n}} (1 - z/\alpha_{3n+2})^{3n+2}dz < \int_0^{\alpha_{3n+2}} (1 - z/\alpha_{3n+2})^{3n+2}dz = \frac{\alpha_{3n+2}}{3n+3}.
\]

But

\[
\sum_{k=1}^{3n+2} \frac{1}{\alpha_{k, n}^*} = \frac{3n+2}{\alpha_{3n+2}} < \frac{1}{a_1},
\]

thus for \(1 \leq i \leq 3n+2 \),

\[
\frac{i}{a_{i, n}} < \sum_{k=1}^{3n+2} \frac{1}{\alpha_{k, n}^*} < 1,
\]

or \(i a_1 < a_{i, n} \) for \(1 \leq i \leq 3n+2, n = 1, 2, \ldots \). Therefore, the distance
from the origin to \(C_{3n+2} \) is greater than \((3n+2)a_1 \) for all \(n \), and \(F \) is
parabolic.
Lemma 4. \(R_n(z) \to f(z) \) uniformly on compact subsets of the plane as \(n \to \infty \).

Lemma 5. For all \(k \geq 1 \), \(\alpha_{k,n} \to \alpha_k \), \(\beta_{2k-2,n} \to \beta_{2k-2} \), \(\beta_{2k-1,n} \to \beta_{2k-1} \), \(\gamma_{2k-1,n} \to \gamma_{2k-1} \), \(\gamma_{2k,n} \to \gamma_{2k} \), and \(\delta_{k,n} \to \delta_k \) as \(n \to \infty \).

Proof. These lemmas are proved in essentially the same way as similar results are obtained in [3].

Lemma 6. \(\lim sup \sum_{k=1}^{n} \frac{1}{d_k,n} < \infty \) and \(\sum_{k=1}^{n} 1/d_k < \infty \) for the following cases: \(d_{k,n} = \alpha_{k,n} \) with \(j = 3n+2 \); \(d_{k,n} = \beta_{2k-2,n} \) with \(j = n+1 \); \(d_{k,n} = \gamma_{2k-1,n} \) with \(j = n+1 \); \(d_{k,n} = \gamma_{2k,n} \) with \(j = n \); \(d_{k} = \alpha_k \); \(d_{k} = \beta_{2k-2} \); \(d_{k} = \beta_{2k-1} \); \(d_{k} = \gamma_{2k-1} \); and \(d_{k} = \gamma_{2k} \). Also \(\lim sup \sum_{k=1}^{n} \frac{1}{\delta_{k,n}} < \infty \) and \(\sum_{k=2}^{n} 1/\delta_k < \infty \).

Proof. If \(C_n \) denotes the coefficient of \(z \) in the Taylor expansion of \(\log R_n(z) \) about the origin, then \(C_n \to K < \infty \) as \(n \to \infty \) and thus, because \(0 < \gamma_{1,n} < \beta_{1,n} \), \(0 < \gamma_{2k-1,n} < \beta_{2k-1,n} \), and \(0 < \gamma_{2k,n} < \beta_{2k+1,n} \),

\[
- \infty < C_n < - \sum_{k=1}^{2n+1} \frac{1}{\alpha_{k,n}} - \sum_{k=1}^{n+1} \frac{1}{\beta_{2k-1,n}} - 1/\beta_{1,n} - \sum_{k=2}^{n+1} 2/\beta_{2k-2,n} < 0.
\]

Consequently, the first three cases are established. The remaining cases follow from the inequalities

\[
0 < \beta_{2k-2,n} < \gamma_{2k-1,n}, \quad 0 < \beta_{2k-1,n} < \gamma_{2k,n},
\]

and

\[
0 < \alpha_{k,n} < \delta_{k+1,n}.
\]

Lemma 7. If

\[
\pi(z) = \frac{1}{(\gamma_1')^2} \prod_{k=1}^{\infty} \frac{\alpha_k}{\beta_{2k-2}} \prod_{k=1}^{\infty} \frac{\beta_{2k-1}}{(\gamma_{2k-1})^2} \prod_{k=1}^{\infty} \frac{\beta_{2k}}{(\gamma_{2k})^3}
\]

then \(f'(z) = \exp(\delta'z)\pi(z) \) where \(\delta' = \lim s'_n \) with \(s'_n \) the coefficient of \(z \) in the Taylor expansion of \(\log R'_n(z)/\pi(z) \) about the origin.

Proof. Using the ordering of \(\alpha, \beta, \) and \(\gamma \) and Lemmas 4 and 5, \(\log R'_n(z)/\pi(z) \to \delta'z \) as \(n \to \infty \).

Lemma 8. \(\delta' = 0 \).

Proof. The inequality \(\delta' \leq 0 \) may be demonstrated using methods similar to those of [2]. Because the factors of \(\pi(z) \) are canonical prod-
ucts of genus zero, then for every $\epsilon > 0$ and for $0 < \rho \leq |\arg z| \leq \pi - \rho$, $\pi(z) = O(\epsilon^{\pi})$ and $1/\pi(z) = O(\epsilon^{\pi})$. Thus under the same conditions, for R sufficiently large and $|z| > R$, $\exp(\delta^t \Re(z) - \epsilon |z|) \leq |f'(z)| \leq \exp(\delta^t \Re(z) + \epsilon |z|)$. For $\delta < 0$ and $|z| > R$, there exists $\phi > 0$ such that for $-5\pi/6 \leq \arg z \leq -2\pi/3$, $|f'(z)| \geq \exp(\phi |z|)$ and for $-\pi/3 \leq \arg z \leq -\pi/6$, $\exp(-\phi |z|) \geq |f'(z)|$.

Since the distance from the origin to C_{n+1} as $n \to \infty$, there exists $\{r_n\}_{n=1}^\infty$ such that $r_n \to \infty$ as $n \to \infty$ and for every z on C_{n+1}, $|z| \geq r_n$. Let $z_{1,2j}$ and $z_{2,2j}$ be two points on C_2j such that $\arg z_{1,2j} = -5\pi/6$ and $\arg z_{2,2j} = -2\pi/3$. As z traverses C_2j from $z_{1,2j}$ to $z_{2,2j}$, f is real and increasing and hence $f'(z)dz \geq 0$. If $0 < \theta$, then for ξ_1 and ξ_2 in $\{\xi| -\pi/3 \leq \arg \xi \leq \pi/6, |\xi| > R\}$, \[
|f(\xi_2) - f(\xi_1)| = \left| \int_{\xi_1}^{\xi_2} f'(t) dt \right| \leq \int_{\xi_1}^{\xi_2} |f'(t)| dt \leq \exp(-\phi R) |\xi_2 - \xi_1| .
\]
Therefore $f(z) \to K$, a constant, uniformly in $\{z| -\pi/3 \leq \arg z \leq -\pi/6, |z| > R\}$ as $n \to \infty$. As $z \to \infty$ along the ray $\arg z = -\pi/4$, $f(z) < 0$ when the ray crosses C_{2n} and $f(z) > 0$ when the ray crosses C_{2n+1}. Hence $K = 0$, and for j sufficiently large, $0 > f(z_{1,2j}) > f(z_{4,2j}) > -1$, where $\arg z_{4,2j} = -\pi/4$ and $z_{4,2j}$ is on C_{2j}. For r_{2j} sufficiently large, \[
b_{2j} - a_{2j} \geq f(z_{2,2j}) - f(z_{1,2j}) = \int_{z_{1,2j}}^{z_{2,2j}} f'(t) dt \geq \exp(\phi r_{2j}) \pi/6 .
\]
Thus as $j \to \infty$, $f(z_{2,2j}) - f(z_{1,2j}) \to \infty$. But $f(z_{2,2j}) \leq 0$, and hence $f(z_{1,2j}) \to \infty$, which contradicts $0 > f(z_{1,2j}) > -1$ for j sufficiently large.

Lemma 9. If \[
P(z) = \frac{z}{\gamma^*_1 \prod_{k=2}^{\infty} (\gamma^*_{3k-1}) \prod_{k=1}^{\infty} (\gamma^*_{3k})^2} ,
\]
then $f(z) = \exp(\delta z) P(z)$, where δ is real and $\delta = \lim_{n \to \infty} s_n$ with s_n the coefficient of z in the Taylor expansion of $\log R_n(z)/P(z)$ about the origin.

Proof. Log $[R_n(z)/P(z)] \to \delta z$ uniformly on any compact subset of the plane as $n \to \infty$.

Lemma 10. $\delta = 0$.
Proof. Using Lemma 4, as \(n \to \infty \),

\[
0 \leq \limsup_{n \to \infty} \left| s_n - s'_n \right| \leq \limsup_{n \to \infty} \left| \sum_{k=m}^{n+1} \frac{1}{\gamma_{3k-1,n}} - \sum_{k=m}^{n+1} \frac{1}{\beta_{3k-2,n}} \right|
\]

\[
+ \limsup_{n \to \infty} \left| \sum_{k=m}^{n} \frac{1}{\gamma_{3k,n}} - \sum_{k=m}^{n+1} \frac{1}{\beta_{3k-1,n}} \right|
\]

\[
+ \limsup_{n \to \infty} \left| \sum_{k=m}^{n} \frac{1}{\gamma_{3k,n}} - \sum_{k=m}^{n+1} \frac{1}{\beta_{3k-1,n}} \right|
\]

\[
+ \limsup_{n \to \infty} \left| \sum_{k=m}^{3n+2} \frac{1}{\delta_{3k,n}} - \sum_{k=m}^{3n+2} \frac{1}{\alpha_{k,n}} \right|
\]

\[
+ \limsup_{n \to \infty} \left| \sum_{k=m}^{n} \frac{1}{\delta_k} - \frac{1}{\alpha_k} \right| \leq \limsup_{n \to \infty} \frac{1}{\gamma_{3m-1,n}}
\]

\[
+ \frac{1}{\gamma_{3m-1}} + \limsup_{n \to \infty} \frac{1}{\beta_{3m-1,n}} + \frac{1}{\beta_{3m-1}} + \limsup_{n \to \infty} \frac{1}{\delta_{m,n}}
\]

\[
+ \frac{1}{\delta_m} = 2\gamma_{3m-1} + 2\beta_{3m-1} + 2\gamma_{m}, \quad \text{for every} \ m \geq 2.
\]

Therefore, \(\delta = \delta' = 0 \).

Collecting the above results, we have the following theorem.

Theorem. A surface of the above class is parabolic and the mapping function is given by \(f(z) = P(z) \) where \(f'(z) = \pi(z) \). Also \(\sum_{k=2}^{n} \frac{1}{d_k} \) converges for \(d_k = \alpha_k, \ d_k = \beta_{3k-2}, \ d_k = \beta_{3k-1}, \ d_k = \beta_{k}, \ d_k = \gamma_{3k-1}, \) and \(d_k = \delta_k \).

The remainder of the paper proves the following theorem.

Theorem. Let

\[
f(z) = \frac{2}{\gamma_k^*} \prod_{k=1}^{n} \frac{(\delta_{3k-1}^*)(\delta_{3k}^*)(\delta_{3k+1}^*)}{(\gamma_{3k-1}^*)(\gamma_{3k}^*)^2},
\]

where \(\sum_{k=2}^{n} \frac{1}{\delta_k} \) and \(\sum_{k=1}^{n} \frac{1}{\gamma_k} \) converge, and for every integer \(k \), \(0 < \delta_{k+1} < \delta_{k+2} \) and \(0 < \gamma_1 < \gamma_{3k-1} < \gamma_{3k} < \gamma_{3k+2} \). The Riemann surface of the inverse of \(f(z) \) is of the class described above.

Lemma 11. There exists a sequence of rational functions \(R_n(z) \) such that \(R_n(z) \to f(z) \) uniformly on compact subsets of the plane and such that the paths other than the real axis on which \(R_n(z) \) is real are \(3n \) simple, closed, nonintersecting curves each symmetric with respect to the real axis.
Proof. Consider
\[R_n(z) = \frac{\varepsilon}{\gamma_1} \prod_{k=1}^{n} \frac{(\delta_{2k-1})(\delta_{2k})(\delta_{2k+1})}{(\gamma_{2k-1})(\gamma_{2k})^2}. \]

Using Rolle's theorem, at least 3n zeros of \(R'_n(z) \) are determined such that \(0 < \alpha_{1,n} < \delta_1 < \alpha_{2,n} < \cdots < \alpha_{3n,n} < \delta_{2n+1} \), at least 2n zeros of \(R'_n(z) \) are determined such that \(0 > -\gamma_1 > -\beta_{1,n} > -\gamma_2 > -\beta_{2,n} > \cdots > -\beta_{2n+2,n} > -\gamma_{2n} \), and \(R_n(z) \) has \(n \) first-order branch points over the poles at \(-\gamma_{2k} \). The indicated critical points of \(R_n(z) \) account for the total branch order, \(6n \), of the rational function.

Through each value of \(\alpha_{k,n}, \beta_{k,n}, \) and \(\gamma_{2k,n} \) passes a curve in addition to the real axis on which \(R_n(z) \) is real. Since \(R_n(\bar{z}) = [R_n(z)]^{-1} \), where \([\]^{-1}\) means complex conjugate, these curves are symmetric about the real axis, and because \(\infty \) is not a critical point, the curves are simple, closed, nonintersecting ones each of which intersects the real axis at two points. A consideration of the order of \(\alpha_{k,n}, \beta_{k,n}, \) and \(\gamma_{2k,n} \) will show that the \(3n \) curves, \(C_{k,n} \), on which \(R_n(z) \) is real intersect the real axis at \(\alpha_{k,n} \) and \(-\beta_{k,n} \), or \(-\gamma_{2k,n} \).

Lemma 12. Any ray from the origin intersects each curve \(C_{k,n} \) exactly once.

Proof. \(R_n(z) = P_n(z)/Q_n(z) \) where \(\deg P_n(z) = 3n+1 \) and \(\deg Q_n(z) = 3n+1 \). The condition that \(z \) is a point on \(C_{k,n} \) or the real axis is that
\[2i\bar{z}[R_n(z)] = R_n(z) - [R_n(z)]^{-1} = P_n(z)/Q_n(z) - P_n(\bar{z})/Q_n(\bar{z}) = 0. \]
Hence on \(C_{k,n} \), \(F(x, y) = P_n(z)Q_n(\bar{z}) - P_n(\bar{z})Q_n(z) = 0. \) \(F(x, y) \) is of degree at most \(6n+1 \) in \(x \) and \(y \) simultaneously. Any line \(y = mx \) or \(x = my \) intersects each \(C_{k,n} \) at least twice, and these \(6n \) intersections together with one at the origin make a total of \(6n+1 \) intersections, the maximum number of solutions of \(F(x, mx) = 0 \) and \(F(my, y) = 0 \).

Lemma 13. The points of \(C_{k,n} \) tend to the points of a curve \(C_k \) as \(n \to \infty \) where \(C_k \) intersects the real axis at \(\alpha_k \) and \(-\beta_k \) or \(-\gamma_k \). Any ray from the origin intersects \(C_k \) exactly once, \(C_k \) is symmetric about the real axis, and \(C_k \) does not pass through \(z = \infty \).

Proof. This lemma is demonstrated in a manner similar to the demonstration of Lemma 14 of [2].

Lemma 14. \(f(z) \) is a schlicht and conformal map of the upper half of the annular region between \(C_1 \) and \(C_{i+1} \) onto \(3 \left\{ (-1)^m \right\} > 0 \).

Proof. This follows using Darboux's theorem.
THE ADJOINT OF A DIFFERENTIAL OPERATOR WITH INTEGRAL BOUNDARY CONDITIONS

ALLAN M. KRALL

In [1] a second-order differential operator was defined on those functions in $L^2(0, \infty)$ satisfying an integral-point type of boundary condition. An analysis of its spectrum and two "eigenfunction" expansions follows. Left unanswered was the problem of finding the adjoint operator and explaining where the nonhomogeneous expansion came from. We now derive the adjoint operator, classify its spectrum and show that the nonhomogeneous expansion is, in fact, the eigenfunction expansion associated with the adjoint operator. It is interesting to see that the adjoint operator is a combination of a differential operator and a one-dimensional vector in $L^2(0, \infty)$.

1. The operator L. We consider a differential expression of the form $ly = -y'' + q(x)y$, $0 \leq x < \infty$, where $q(x)$ is an arbitrary measurable complex function satisfying $\int_0^\infty |q(x)| \, dx < \infty$.

We denote by D_0 those functions f defined on $[0, \infty)$ and satisfying

1. f is in $L^2(0, \infty)$,
2. f' exists and is absolutely continuous on every finite subinterval of $[0, \infty)$,
3. lf is in $L^2(0, \infty)$.

Let $K(x)$ be an arbitrary complex-valued function on $L^2(0, \infty)$.