4. The table on the preceding page lists the value of $s(n)$ for all $n \leq 113$. All entries for $s(n)$ were computed individually and checked by means of Theorem 2.

References

University of New Mexico

ON THE CONTENT OF POLYNOMIALS

FRED KRAKOWSKI

1. Introduction. The content $C(f)$ of a polynomial f with coefficients in the ring R of integers of some algebraic number field K is the ideal in R generated by the set of coefficients of f. This notion plays an important part in the classical theory of algebraic numbers. Answering a question posed to the author by S. K. Stein, we show in the present note that content, as a function on $R[x]$ with values in the set J of ideals of R, is characterized by the following three conditions:

(1) $C(f)$ depends only on the set of coefficients of f;
(2) if f is a constant polynomial, say $f(x) = a$, $a \in R$, then $C(f) = (a)$, where (a) denotes the principal ideal generated by a;
(3) $C(f \cdot g) = C(f) \cdot C(g)$ (Theorem of Gauss-Kronecker, see [1, p. 105]).

2. Characterization of content. Denote by $[f]$ the set of nonzero coefficients of $f \in R[x]$ and call f, g equivalent, of $f \sim g$, if $[f] = [g]$. A polynomial is said to be primitive if its coefficients are rational integers and if the g.c.d. of its coefficients is 1.

Lemma. Let S be a set of polynomials with coefficients in R and suppose it satisfies:

(1) $1 \in S$;
(2) if $f \in S$ and $f \sim g$, then $g \in S$;
(3) if $f \cdot g \in S$, then $f \in S$ and $g \in S$.

Then S contains all primitive polynomials.

Received by the editors April 27, 1964.
Proof. We will call a polynomial \(f \) with rational integer coefficients special, if \(1 \in [f] \) and \(a \in f \) implies \(-a \in f \). If \(\rho(x) = \sum_{k=0}^{n} c_k x^k \) is primitive, let \(g(x) = \sum_{k=0}^{n} d_k x^k \), where \(d_0, d_1, \ldots, d_n \) are rational integers such that \(\sum_{k=0}^{n} c_k d_{n-k} = 1 \). Then \([pg] \) contains 1 and \(pg(x^{2n+1} - 1) \) is special. By virtue of condition (3) it suffices to show that every special polynomial is in \(S \).

Let therefore \(f \) be special and let \(m_f \) be the maximum of the absolute values of the coefficients of \(f \). We now proceed by induction on \(m_f \).

If \(m_f = 1 \), then \(f \sim x^2 - x + 1 \) and since \((x+1)(x^2-x+1) = x^3 + 1 \sim 1 \) and \(1 \in S \), it follows that \(f \in S \).

Let now \(m_f > 1 \) and \([f] = \{1, -1, m, -m, a_1, -a_1, \ldots, a_n, -a_n\}, \)
\(|a_k| < m, \ k = 1, \ldots, n \). Consider the polynomial \(f_1(x) = -1 + mx - mx^2 + x^4 + a_1 x^6 + a_1 x^7 + \ldots + a_n x^{4n+1} - a_n x^{4n+3}. \) Clearly \(f_1 \sim f \). Multiplying \(f_1 \) by \(x + 1 \) we obtain
\[
g(x) = f_1(x)(x + 1)
\]
\[
= -1 + (m - 1)x - (m - 1)x^3 + x^4 + a_1 x^6 + a_1 x^7 - a_1 x^8 + \ldots + a_n x^{4n+1} + a_n x^{4n+2} - a_n x^{4n+3} - a_n x^{4n+4}.
\]
g is special and \(m_g = m - 1 \). Applying the induction hypothesis, we get \(g \in S \). Hence \(f_1 \in S \) by (3) and \(f \in S \) by (2), which proves the lemma.

Theorem. Let \(J \) be the set of ideals in \(R \) and \(h \) a function on \(R[x] \) with values in \(J \) satisfying the conditions:

1. If \(f, g \in R[x] \) and \(f \sim g \), then \(h(f) = h(g) \);
2. If \(f \) is constant, say \(f(x) = a, a \in R \), then \(h(f) = (a) \);
3. \(h(fg) = h(f) \cdot h(g) \).

Then \(h(f) = C(f) \) for all \(f \in R[x] \).

Proof. Consider first the case, where \(1 \in [f] \). We may assume \(f \) is of the form \(x^n + a_1 x^{n-1} + \ldots + a_n, a_i \in R, i = 1, \ldots, n \). Let \(\theta_i \) be a primitive element of the field \(K \) and \(\theta_2, \ldots, \theta_r \) its conjugates. Each \(a_i \) is then a polynomial \(p_i(\theta_j) \) with rational coefficients. Let \(a_{ij} = p_i(\theta_j), \ i = 1, \ldots, n, \ j = 1, \ldots, r \), and consider \(f_j(x) = x^n + a_1 x^{n-1} + \ldots + a_{nj}. \) Since the coefficients of \(f \) are integers of \(K \), the product \(F(x) = f_1 f_2 \ldots f_r \) has rational integer coefficients and those of \(f_2 \ldots f_r \) are also in \(R \). Now \(F \) is primitive as \(1 \in [F] \). Since the set of all polynomials on which \(h \) assumes the value (1) satisfies the conditions of the lemma, we have \(h(F) = (1) \) and therefore \(h(f) = (1) \).

Next let \(C(f) \) be a principal ideal with generating element \(a \neq 0 \).

1 For this proof, I am indebted to E. P. Specker.
Then \(f(x) = af'(x) \), where \(C(f') = (1) \). We can find a polynomial
\(g'(x) \in \mathbb{R}[x] \) such that \(1 \in [f' \cdot g'] \). Then
\(h(f'g') = h(f')h(g') = (1) \) and thus also \(h(f') = (1) \). Hence
\(h(f) = h(a)h(f') = (a)(1) = (a) = C(f) \).

If, finally, \(C(f) \) is arbitrary, there is a positive integer \(k \) such that
\((C(f))^k \) is principal (see \([1, \text{p. 121}]\)). Now \((C(f))^k = C(f^k) = h(f^k) = (h(f))^k \) and hence \(h(f) = C(f) \), because factorization into prime ideals is unique in \(\mathbb{R} \). This proves the theorem.

3. **An example.** The Gauss-Kronecker theorem applies to more general rings than just to the rings of integers in a number field. Our theorem however does not remain true if the elements of \(\mathbb{R} \) are no longer algebraic over the rationals, as will now be shown by an example.

Take for \(\mathbb{R} \) the ring of polynomials in one indeterminate \(y \) and with rational coefficients. \(\mathbb{R} \) is a principal ideal ring and clearly the Gauss-Kronecker theorem holds for the polynomials of \(\mathbb{R}[x] \). However, if \(f \in \mathbb{R}[x] \), say
\[f(x) = \sum_{i=0}^{n} a_i(y)x^i, \quad a_i(y) \in \mathbb{R}, \]
let \(m(y) = \text{g.c.d.} (a_0(y), \ldots, a_n(y)) \) and let \(d \) be the degree of \(f/m \) with respect to \(y \). Take a fixed but arbitrary nonzero element \(r \in \mathbb{R} \) and define:

\[
\begin{align*}
 h(f) &= (m \cdot r^d), & \text{if } f \neq 0, \\
 h(0) &= 0.
\end{align*}
\]

The function \(h \) thus defined satisfies the assumptions of the theorem, but clearly \(h(f) \neq C(f) \), if \(f \) is not a constant polynomial.

Reference

University of California at Davis