A CHARACTERIZATION OF THE ALMOST PERIODIC HOMEOMORPHISMS ON THE CLOSED 2-CELL

N. E. FOLAND

1. Introduction. The objective of this paper is to prove that any almost periodic homeomorphism of a closed 2-cell onto itself is topologically equivalent to a reflection of a disk in a diameter or to a rotation of a disk about its center. This extends the well-known results of Kerékjártó [5] for periodic homeomorphisms (cf. Eilenberg [1, Theorem 2]).

2. A topological classification of the almost periodic homeomorphisms on a closed 2-cell. A homeomorphism h of a metric space (X, ρ) onto itself is said to be almost periodic on X if $\epsilon > 0$ implies that there exists a relatively dense sequence \(\{n_i\} \) of integers such that $\rho(x, h^{n_i}(x)) < \epsilon$ for all $x \in X$ and $i = \pm 1, \pm 2, \cdots$. A homeomorphism h of the space X onto itself is said to be topologically equivalent to a homeomorphism f of the space Y onto itself if there exists a homeomorphism β of X onto Y such that $h = \beta^{-1}f\beta$. If h and f are topologically equivalent, it is clear that h is almost periodic on X if and only if f is almost periodic on Y. By a closed 2-cell we mean any homeomorphic image of the unit disk. With these definitions it suffices to consider almost periodic homeomorphisms on the unit disk D. Denote the metric in D by $d(\cdot, \cdot)$.

Kerékjártó’s result [5, p. 224] for periodic homeomorphisms may be stated as follows:

Lemma 1. Let f be a periodic homeomorphism of D onto D. If f is orientation reversing, then f is topologically equivalent to a reflection of D in a diameter. If f is orientation preserving, then f is topologically equivalent to a rotation of D about its center.

Since any regularly almost periodic homeomorphism of D onto D is necessarily periodic [2] we have,

Lemma 2 [4, p. 55]. Let h be an almost periodic homeomorphism of D onto D and let ϵ be any positive number. Then there exists a periodic homeomorphism H of D onto D such that $d(h(x), H(x)) < \epsilon$ for each $x \in D$, where H may be chosen as the uniform limit of a sequence of positive powers of h.

A well-known characterization of the almost periodicity of h is the following:

Presented to the Society, January 29, 1965; received by the editors August 3, 1964.

1031
Lemma 3 [3, p. 341]. The following are pairwise equivalent: (1) h is almost periodic on D; (2) the set of powers of h is equicontinuous; (3) the set of powers of h has compact closure in the group of all homeomorphisms of D onto D with the usual topology; (4) there exists a compatible metric of D which makes h an isometry.

From (4) we see that if h is almost periodic on D, then in the metric under which h is an isometry the orbit closure of each point of D lies on a metric circle about any fixed point of D. We will show in the nonperiodic case that each nondegenerate orbit closure is a simple closed curve and that these lie around a unique fixed point of D like concentric circles.

Let C denote the boundary of D. Then C is a unit circle.

Lemma 4. If h is an almost periodic homeomorphism of D onto D such that $h|C$ is the identity, then h is the identity on D.

Proof. Let $\epsilon > 0$ be arbitrary. By Lemma 2 there exists a periodic homeomorphism H on D such that $d(h(x), H(x)) < \epsilon$ for all $x \in D$ where H is the uniform limit of a sequence of positive powers of h. Since $h|C$ is the identity, it follows that $H|C$ is the identity. Then H is periodic and orientation preserving, and hence is topologically equivalent to a rotation r of D. Thus there exists a homeomorphism β of D onto D such that $H = \beta^{-1}r\beta$. Then $r = \beta H\beta^{-1}|C$ is the identity from which it follows that r, and hence H, is the identity on D. Since $\epsilon > 0$ was arbitrary it follows that h is the identity on D.

Any homeomorphism of D onto D is either orientation preserving or orientation reversing.

Theorem 1. If h is an almost periodic orientation reversing homeomorphism of D onto D, then h is periodic of period two and hence is topologically equivalent to a reflection of D in a diameter.

Proof. Using Lemma 1, it suffices to prove that h is periodic of period two. Since $h|C$ is orientation reversing and almost periodic, the periodic homeomorphism H of Lemma 2 is such that $H|C$ is periodic and orientation reversing. Hence $H|C$ is periodic of period two from which it follows that $h|C$ is periodic of period two. Thus $h^2|C$ is the identity and we conclude from Lemma 4 that h^2 is the identity on D. Hence h is periodic of period two.

Theorem 2. Let h be an almost periodic orientation preserving homeomorphism of D onto D. Then h is topologically equivalent to a rotation of D through an angle $\pi \tau$, where $\tau (0 \leq \tau \leq 1)$ is uniquely determined and is rational if and only if h is periodic.
Proof. If \(h \) is periodic the result is known [5] (cf. Eilenberg [1, Theorem 2]). Thus suppose \(h \) is nonperiodic. Let \(G \) be the closure of the set of integral powers of \(h \) in the group of all homeomorphisms of \(D \) onto \(D \). Then by Lemma 3, \(G \) is a compact topological group of homeomorphisms of \(D \) onto \(D \) and each \(g \in G \) is almost periodic on \(D \).

The boundary \(C \) of \(D \) is a minimal set under \(G \). Let \(x \in C \) and define \(\alpha : G \to C \) as follows: For each \(g \in G \), \(\alpha(g) = g(x) \). Then \(\alpha \) is a continuous mapping of the topological space of \(G \) onto the circle \(C \). It follows that \(\alpha \) is a homeomorphism if it is one-to-one. Thus let \(g_1, g_2 \in G \) such that \(g_1(x) = g_2(x) \). Then \(g = g_2^{-1}g_1 \in G \) is such that \(g(x) = x \).

Since \(g \) is almost periodic on \(D \), it is almost periodic on \(C \). Since \(x \) is fixed under \(g \) and \(g \) is orientation preserving it follows that \(g \vert C \) is the identity. Thus by Lemma 4, \(g \) is the identity on \(D \) and \(g_1 = g_2 \). Hence \(\alpha \) is a homeomorphism.

Thus \(G \) is a compact, connected topological group of homeomorphisms of \(D \) onto \(D \). (It follows that the character group \(G^* \) of \(G \) is an infinite cyclic group and hence that \(G \) is isomorphic to the circle group.) Since \(D \) contains a one-dimensional orbit, namely \(C \), under \(G \), all orbits in \(D \) with one exception are one-dimensional [6, p. 252]. The exceptional orbit is a fixed point \(z \) under \(G \) and there is a closed arc \(A \) from \(z \) to \(C \) such that \(A \) is a cross-section of all orbits in \(D \).

Each nondegenerate orbit is then a homogeneous, compact, and connected minimal set of dimension one. Thus each such orbit is a simple closed curve, and the family of all nondegenerate orbits lie about \(z \) like concentric circles.

The homeomorphism \(h \vert C \) is characterized by an irrational number \(\tau \) between 0 and 1, the Poincaré rotation number, and \(h \vert C \) is topologically equivalent to a rotation \(r \) of \(C \) through an angle \(\tau \pi \) [3, p. 343]. Thus there exists a homeomorphism \(\beta_0 \) of \(C \) onto \(C \) such that \(h \vert C = \beta_0^{-1} \beta \). Now let \(c \) be the endpoint of \(A \) that lies in \(C \). Define \(\beta : D \to D \) as follows: \(\beta(A) \) is a homeomorphism of \(A \) onto the radius of \(D \) to \(\beta_0(c) \) such that \(\beta(z) \) is the center of \(D \). For each \(g \in G \), \(\beta(g(A)) \) is a homeomorphism of the arc \(g(A) \) onto the radius of \(D \) to \(\beta_0(g(c)) \) such that for each \(x \in A \), \(\beta(x) \) and \(\beta(g(x)) \) lie on the same circle of \(D \) concentric with \(C \).

In order to show that \(\beta \) is well-defined we show that as \(g \) varies over \(G \) the arcs \(g(A) \) cover \(D \) and if \(g_1, g_2 \in G \) such that \(g_1 \neq g_2 \), then \(g_1(A) \) and \(g_2(A) \) have only the point \(z \) in common. It is clear that \(D \) is covered by the arcs \(g(A) \). Thus let \(x \in D - \{z\} \) such that \(g_1(x) = g_2(x) \). Then \(g = g_2^{-1}g_1 \in G \) is such that \(A \) and \(g(A) \) each go through the point \(x \). The orbit of \(x \) under \(G \) is a simple closed curve \(C' \). \(g \) is almost periodic and orientation preserving on \(C' \) and \(x \in C' \) is fixed under \(g \). Thus
$g|C'$ is the identity. The fact that g is the identity on D now follows by an argument similar to that used in proving Lemma 4. Thus β is well-defined.

Since the map $\alpha(g) = g(c)$ is a homeomorphism of G onto C, β maps the cross-sections $g(A)$, generated by A, onto the radii of D. Since $\beta(x)$ and $\beta(g(x))$ lie on the same circle of D concentric with C, β maps the orbits under G (the orbit closures under h) onto the circles of D concentric with C. Each $x \in D - (z)$ is on but one image $g(A)$ of A, $g \in G$, and one of the simple closed curves formed by the orbits. Thus the map β is one-to-one and onto. In order to show that β is continuous and hence a homeomorphism, it suffices to show that β is continuous at each point of A.

Let $x \in A$, $x \neq z$, and let $x, x' \in D$ such that $\lim_{i \to \infty} x_i = x$. Let x_i' be the point of the orbit of x_i under G that is on A and let $g_i \in G$ be such that $g_i(x_i') = x_i$. Now $\beta(x_i)$ is the intersection of the radius of D to $\beta_0(g_i(c))$ and the circle of D concentric with C passing through $\beta(x_i')$. Since the orbit decomposition of D under G is continuous and $\lim_{i \to \infty} x_i = x$, $\lim_{i \to \infty} x_i' = x$, which implies that $\lim_{i \to \infty} \beta(x_i') = \beta(x)$.

Thus the concentric circles containing $\beta(x_i)$ converge to the circle containing $\beta(x)$. Now $\lim_{i \to \infty} g_i(x_i) = x$ and $\lim_{i \to \infty} x_i' = x$ imply that $\lim_{i \to \infty} g_i$ is the identity in G. Thus $\lim_{i \to \infty} g_i(c) = c$ implies $\lim_{i \to \infty} \beta_0(g_i(c)) = \beta_0(c)$. Hence the radii of D containing $\beta(x_i)$ converge to the radius of D containing $\beta(x)$. Thus β is continuous at x. It is easy to see that β is continuous at z. Hence β is a homeomorphism of D onto D. Finally $\beta|C = \beta_0$ and $h|C = \beta^{-1}R\beta$ where r is a rotation of C through an angle π. Then the definition of β implies that $h = \beta^{-1}R\beta$ where R is the extension of r to a rotation of D through an angle π. This completes the proof of the theorem.

References

Kansas State University