POWERS IN EIGHTH-GROUPS

SEYMOUR LIPSCHUTZ

1. Introduction. The purpose of this paper is to give an algorithm which decides whether or not an element in an eighth-group is a power. A group G is an eighth-group if it is finitely presented in the form

$$G = \langle a_1, \ldots, a_n; R_1(a_1) = 1, \ldots, R_m(a_n) = 1 \rangle,$$

where (i) each defining relator is cyclically reduced and (ii) if B_i and B_j are cyclic transforms of R_i and R_j, then less than one-eighth of the length of the shorter one cancels in the product $B_i^{k_1}B_j^{k_2}$, unless the product is unity. The notation in this paper is the same as that in [3]. Note that Lemma 3 and Lemma 4 in [3] hold for eighth-groups.

Reinhart [4] gives an algorithm to decide, among other things, whether or not elements in certain Fuchsian groups are powers. Note that the Fuchsian group $F(p; n_1, \ldots, n_d; m)$, see Greenberg [1], is an eighth-group if

$$4p + d + m, n_1, \ldots, n_d > 8.$$

Hence our algorithm holds for a somewhat wider class of groups and, furthermore, is purely algebraic.

Remark. Given any word V in a finitely presented group, it is possible to find a cyclically fully reduced word V^* conjugate to V by writing the word V in a circle and then reducing. Such a word V^* will be called a reduced cyclic transform of V.

2. The algorithm. First we prove a lemma about eighth-groups G. Here r denotes the length of the largest defining relator in G.

Received by the editors April 3, 1964.
Lemma. Let W be cyclically fully reduced, let W be conjugate to V, and let $l(V) = n$. Then $l(W) \leq r^2 + rn$.

Proof of Lemma. By Greendlinger's Basic Theorem in [2, p. 643], there exist reduced cyclic transforms W^* and V^* of W and V such that $W^* = T^{-1}V^*T$, where $l(T) < r/8$ and $l(V^*) \leq l(V)$. Hence

$$l(T^{-1}V^*T) < r/8 + n + r/8 < r + n.$$

Consequently, by Lemma 3 in [3],

$$l(W^*) = l(T^{-1}V^*T) = r^2 + nr.$$

But W cyclically fully reduced implies $l(W) = l(W^*)$. Hence the lemma is true.

Suppose, now, that an arbitrary word $W \neq 1$ in an eighth-group is a power, say $W = V^m$ and $l(W) = n$. Let A be a reduced cyclic transform of V; then W is conjugate to A^m. Lemma 4 in [3] implies that $A^m = B$, where B is cyclically fully reduced and where (i) $l(B) \geq m$, and (ii) $l(B) \geq l(A) - r$. Accordingly, our lemma above implies

$$m \leq l(B) < r^2 + nr,$$

$$l(A) \leq l(B) + r < r^2 + nr + r.$$

The above discussion proves the following

Theorem. Let $W \neq 1$ be an arbitrary word in an eighth-group G where $l(W) = n$ and r is the length of the largest defining relator in G. Then W is a power if and only if W is conjugate to A^m where m and A satisfy (1) and (2).

Since the conjugacy problem has been solved for eighth-groups by Greendlinger in [2], and since there exist only a finite number of words in any given length, the above theorem gives us our algorithm.

Bibliography