If F is a ring, then an obvious way to construct subrings of $(F)_n$, the ring of all $n \times n$ matrices over F, is to choose additive subgroups F_{ij} of F such that

$$F_{ij}F_{ik} \subset F_{ik}, \quad i, j, k = 1, \ldots, n,$$

and then form the ring

$$R = \sum_{i,j=1}^n F_{ij}e_{ij}$$

where the e_{ij} are the usual unit matrices. For example, we could select n left ideals A_1, \ldots, A_n of either F or a subring of F and then let $F_{ij} = A_j$, $i, j = 1, \ldots, n$.

If F is a (skew) field and the F_{ij} satisfying (1) are all nonzero, then R defined by (2) is easily shown to be a prime ring. The main result of this paper (1.3) is that if F is a right ring of quotients of F_{11} then $(F)_n$ is a right ring of quotients of R and there exists a subring K of F and a nonzero diagonal matrix $d \in R$ such that $(K)_n$ is a subring of dRd^{-1} and F is a ring of quotients of K. This result is used to give new proofs of the Faith-Utumi theorem [2] and of Goldie’s theorem [1].

1. Prime matrix rings. If A is a subset of a ring, then let $A' = \{ x \in A \mid x \neq 0 \}$. If A and B are subsets of a field, then denote by $AB^{-1} = \{ ab^{-1} \mid a \in A, b \in B' \}$. The notation $R \subseteq S$ is used to show that S is a right ring of quotients of R; that is, that R is a subring of S and a $R \cap R \neq 0$ for all $a \in S'$. It is readily seen that if F is a field and K is a subring of F, then $K \subseteq F$ iff $KK^{-1} = F$.

1.1. Lemma. Let F be a field and A be a subring of F for which $AA^{-1} = F$. If B and C are nonzero right A-modules contained in F, then $B \cap C \neq 0$ and $BC^{-1} = F$.

Proof. For any $f \in F'$, $b \in B'$, and $c \in C'$, there exist $a_i \in A$ such that $b^{-1}fc = a_0a_1^{-1}$. Hence, $f = (ba_1)(ca_2)^{-1} \in BC^{-1}$. We conclude that $BC^{-1} = F$. If $f = 1$, then $ba_1 = ca_2$ and evidently $B \cap C \neq 0$.

1.2. Theorem. Let F be a field, $\{ F_{ij} \mid i, j = 1, \ldots, n \}$ be a set of
nonzero additive subgroups of F satisfying (1), and R be the prime ring defined by (2). Then $R \subseteq (F)$ if and only if $F_1 \subseteq F$.

Proof. If $R \subseteq (F)$, then for every $d \in F'$ there exists $a \in R$ such that $(de_1)a \in R^1$. If $a = \sum a_{ij}e_{ij}$, then $da_{ij} \in F_{ij}$ and $d \in F_{ij}F_{ij}^{-1}$ for some j. Since $f_{ij}^{-1} = (fh)(gh)^{-1}$ for all $f, g \in F_{ij}$ and $h \in F_{ji}$, evidently $F_{ij}F_{ij}^{-1} \subseteq F_1F_{ij}^{-1} \subseteq F_{ij}$. Hence, $F \subseteq F_1F_{ij}^{-1}$ and $F_1 \subseteq F$.

Conversely, if $F_1 \subseteq F$ then $F_1F_{ij}^{-1} = F$ for all i and j by (1.1). Actually, $fg^{-1} = (fh)(gh)^{-1}$ for all $f \in F_{ij}$, $g \in F_{ji}$, $h \in F_{ik}$ so that $F_{ik}F_{ik}^{-1} = F$ for all i, j, k. Since each F_{ik} is a right F_{kk}-module, the F_{kk}-module $F_k = \cap_{i=1}^n F_{ik}$ is nonzero and $F_kF_{kk}^{-1} = F$ by (1.1). Clearly each F_k is a subring of F. Thus, R contains a subring S of the form

$S = \sum_{i,j=1}^n F_{ij}e_{ij}$

where the F_{ij} are subrings of F satisfying

(4) $F_iF_j \subseteq F_{ij}, \quad F_i \subseteq F, \quad i, j = 1, \ldots, n.$

To complete the proof of 1.2, we need only prove that $S \subseteq (F)$. Let $a = \sum a_{ij}e_{ij} \in (F)$, with $a_{ij} \neq 0$. Then there exist $b \in F_{ij}$ such that $a_{ij}b \in F_i$ for each i. Since $b_1 \cap \cdots \cap b_n F_i \neq 0$ by (1.1), there exists some $b \in F_{ij}$ such that $a_{ij}b \in F_i$ for each i. Hence, $a(b_{ei}) = \sum a_{ij}b_{ei} \in S$. Therefore, $S \subseteq (F)$ and 1.2 is proved.

It is easy to give an example showing that $F_1 \cap \cdots \cap F_n$ might be zero in ring S of (3). Thus, if D is a right Ore domain having a quotient field of F (i.e., $DD^{-1} = F$) but D is not a left Ore domain (i.e., $D^{-1}D \neq F$), then there exist nonzero left ideals F_i of D such that $F_1 \cap \cdots \cap F_n = 0$. Still, $S \subseteq (F)$ if S is defined by (3). Although the intersection of the F_k might be zero, the intersection of the corresponding subrings of F in some isomorphic image of S in (F) is nonzero as we shall now show.

Let S be a subring of (F) defined by (3) and (4) above, and let $g_i \in F_i$, $i = 1, \ldots, n$. If $f_k = g_1g_2 \cdots g_k$, $k = 1, \ldots, n$, then clearly each $f_k \in F_k$ and $d = \sum f_{ei}e_{ii}$ has inverse $d^{-1} = \sum f_{ij}^{-1}e_{ii}$ in (F). Let

$T = dSd^{-1} = \sum_{i,j=1}^n (f_if_{ij}^{-1})e_{ij}$

an isomorphic image of S. Evidently $T \subseteq (F)$. Since $f_{a}a_{ij}^{-1} = f_{a}a_{ij}^{-1} \cdots g_s a g_s \cdots g_{k}^{-1} \in F_{ij}$ for all $a \in F_i$, clearly

$\bigcap_{i,j=1}^n F_{ij}^{-1} = F_1F_{ij}^{-1}.$
If we let $K = f_n F_i f_i^{-1}$, then K is a subring of F for which $KK^{-1} = F$ by 1.1. Evidently $(K)_n \subseteq T$ and also $(K)_n \subseteq (F)_n$ by 1.2. We have proved the following result.

1.3. Theorem. Let F be a field, F_i be nonzero additive subgroups of F satisfying (1), and R be the prime ring defined by (2). If $F_i \subseteq F$, then there exists a subring K of F and a nonsingular diagonal matrix $d \in R$ such that $KK^{-1} = F$ and $(K)_n \subseteq dRd^{-1} \subseteq (F)_n$.

2. The annihilator ideal lattice. In order to apply the theorems of §1 to prime rings in general, we need the following lattice-theoretic results. Since we wish to use these results in another context [7], we shall state them in as general terms as possible.

Let P be a ring, L_r be the lattice of right ideals of P, and R^s_r be the right singular ideal of P. Thus, $b \in R^s_r$ iff $b^r = \{ x \in R \mid bx = 0 \}$ is a large right ideal; i.e., $b^r \cap A \neq 0$ for all nonzero $A \in L_r$. If $R^s_r = 0$, then we denote the lattice of closed right ideals of R by L^s_r. Thus, $A \in L^s_r$ iff A is the only essential extension of A in L_r. It is well-known that L^s_r is a complete complemented modular lattice.

If L is a lattice containing 0 and I, then a minimal (maximal) element of $L - \{ 0 \} (L - \{ I \})$ is called an atom (coatom). If $P = 0$ and L^s_r is atomic (i.e., every nonzero element of L^s_r contains an atom), then let us denote by R^s_t the union in L_r of all atoms of L^s_r. A ring R is called (right) stable [6] iff $R^s_t = 0$, L^s_r is atomic, and $(R^s_t)^r = 0$. Not only is every prime ring (for which L^s_r is atomic) stable, but so also is every $n \times n$ triangular matrix ring over a right Ore domain.

Another lattice associated with a ring R is the lattice J_r of annihilating right ideals of R. If $R^s_t = 0$ then J_r is a subset, although not necessarily a sublattice, of L^s_r. However, intersections are set-theoretic in both lattices.

Needless to say, the corresponding left structure of a ring R is indicated by replacing each "r" above by an "l".

The following lemma, due to Koh [3], is basic to the work of this section. Our proof is a paraphrase of Koh’s proof for prime rings.

2.1. Lemma. If R is a stable ring then $R^s_t = 0$.

Proof. If $R^s_t \neq 0$ and $d \in (R^s_t)^r$, then $Ad \neq 0$ for some atom $A \in L^s_r$ and $ad \neq 0$ for some $d \subseteq A^r$. Since $Ra \cap d^r \neq 0$, $xa \neq 0$ and $xad = 0$ for some $x \subseteq R^r$. However, a^r is a coatom of L^s_r by [4, 6.9] and therefore $(xa)^r = a^r$. This contradiction proves the lemma.

The lattices J_r and J_i are dual isomorphic under the correspondence $A \leftrightarrow A^r, A \subseteq L_r$. If R is a stable ring then the lattice J_i is atomic. Actually, let us show that if $A, B \subseteq J_i$ with $A \cap B \neq B$, then there
exists an atom \(C \in J_1 \) such that \(C \subseteq B \) and \(C \cap A = 0 \). By 2.1, \(L^*_1 \supseteq J_1 \) and there exists some nonzero \(D \in L^*_1 \) such that \(D \subseteq B \) and \(D \cap A = 0 \). Since \(R \) is stable, \(ED \neq 0 \) and hence \(E \cap D \neq 0 \) for some atom \(E \in L^*_1 \). If \(d \in (E \cap D)' \), then \(d^* \) is a coatom of \(L^*_1 \) by \([4, 6.9]\). Therefore, \(d^* \) is a coatom of \(J_1 \) and \(C = d^* \) is an atom of \(J_1 \). Clearly \(C \subseteq B \) and \(C \cap A = 0 \).

If \(B \) is any atom of \(J_1 \) then \(B^r \) is a coatom of \(L^*_1 \) by the proof above. Thus, if \(B \) covers 0 in \(J_1 \) then \(0^r = R \) covers \(B^r \) in \(L^*_1 \). This is a special case of the following result.

2.2. Lemma. Let \(R \) be a stable ring and \(A, B \in J_1 \). Then \(B \) is a cover of \(A \) in \(J_1 \) iff \(A^r \) is a cover of \(B^r \) in \(L^*_1 \).

Proof. If \(A^r \) is a cover of \(B^r \) in \(L^*_1 \), then \(A^r \) is a cover of \(B^r \) in \(J_1 \) and \(B \) is a cover of \(A \) in \(J_1 \). Conversely, if \(B \) is a cover of \(A \) in \(J_1 \) then there exists an atom \(C \in J_1 \) such that \(C \subseteq B \) and \(C \cap A = 0 \). Clearly \(B = A \cup C \) in \(J_1 \). Hence, \(B^r = A^r \cap C^r \). Since \(C^r \) is a coatom of \(L^*_1 \) and \(A^r \subseteq C^r \), evidently \(A^r \cup C^r = R \) in \(L^*_1 \). Therefore, the intervals \([C^r, R] \) and \([A^r \cap C^r, A^r] \) are isomorphic and \(A^r \) covers \(A^r \cap C^r = B^r \).

The main result of this section is as follows.

2.3. Theorem. If \(R \) is a stable ring then the lattice \(J_1 \) is upper semimodular.

Proof. Let \(A, B \in J_1 \) be covers of \(A \cap B \). Then \((A \cap B)^r \) covers \(A^r \) and \(B^r \) in \(L^*_1 \) by 2.2. Hence, \((A \cap B)^r = A^r \cup B^r \) in \(L^*_1 \). By the modularity of \(L^*_1 \), \(A^r \) and \(B^r \) cover \(A^r \cap B^r \). Therefore, \(A \cup B \) \((= (A \cap B^r)^r) \) covers \(A \) and \(B \) in \(J_1 \) by 2.2. This proves 2.3.

If the lattice \(L^*_1 \) has a finite dimension \(n \), then we call \(n \) the (right) dimension of \(R \) and write \(\dim R = n \).

2.4. Corollary. If \(R \) is a stable ring such that \(\dim R = n \), then \(J_1 \) is a complemented lattice of dimension \(n \).

Proof. Every maximal chain in \(J_1 \) has length by 2.2, and therefore \(\dim J_1 = n \). To show that \(J_1 \) is complemented, let \(A, B \in J_1 \) with \(A \cap B = 0 \) and \(A \cup B \neq R \). Then there exists an atom \(C \in J_1 \) such that \(C \cap (A \cup B) = 0 \). We claim that \(A \cap (B \cup C) = 0 \) in \(J_1 \). If this is so, then by induction there exists some \(D \in J_1 \) such that \(A \cap D = 0 \) and \(A \cup D \neq R \). Hence, \(J_1 \) is complemented.

If \(A \cap (B \cup C) \neq 0 \), then there exists an atom \(E \in J_1 \) such that \(E \subset A \cap (B \cup C) \). Then \(E \cap B = 0 \), \(E^r \supseteq A^r \), and \(E^r \supseteq B^r \cap C^r \). Clearly \(C^r \cup (A^r \cap B^r) = R \) in \(L^*_1 \). Hence, \(B^r = B^r \cap (C^r \cup (A^r \cap B^r)) \) = \((B^r \cap C^r) \cup (A^r \cap B^r) \) and \(E^r \supseteq B^r \), contrary to the fact that \(E \cap B = 0 \). Hence, \(A \cap (B \cup C) = 0 \).
The lattice J_i of a stable ring R is not necessarily modular, as the following example shows.

2.5. Example. Let D be a right Ore domain which is not a left Ore domain, F be the right field of quotients of D, and $R = (D)_{\mathbb{F}}$. Clearly R is a prime ring of dimension 3. Select $g, h \in D'$ such that $Dg \cap Dh = 0$, and let $u = ge_{11} + e_{21}, v = e_{21} + he_{11}$ in R. Then $u' = Re_{21} + R(e_{11} - ge_{21})$ and $v' = Re_{11} + R(he_{12} - e_{13})$. Since re_{11} and re_{21} are atoms of J_i, evidently u' and v' are coatoms of J_i. However, $u' \cup v' = R$ and $U' \cap v' = 0$, and therefore J_i is not modular (since it is not lower semi-modular).

3. Goldie prime rings. A prime ring R such that $R^\times = 0$ and dim $R = n > 1$ is called a Goldie prime ring. Such rings were studied by Goldie in [1]. By 2.4, J_i is a complemented, upper semi-modular lattice for such a ring.

Let P be a Goldie prime ring and $n = \dim R$. By 2.4, there exists an independent set $\{B_1, \ldots, B_n\}$ of atoms of J_i (i.e., $(B_i \cup \cdots \cup B_j) \cap B_{i+1} = 0, i = 1, \ldots, n - 1$). Hence, $\{B_1, \ldots, B_n\}$ is an independent set of coatoms of L^*_i (i.e., $(B_i \cap \cdots \cap B_j) \cup B_{i+1} = R, i = 1, \ldots, n - 1$). If we let

$$A_j = \bigcap_{i=1, i \neq j}^n B_i, \quad j = 1, \ldots, n,$$

then we may show lattice-theoretically that $\{A_1, \ldots, A_n\}$ is an independent set of atoms of L^*_i. What is more important, the A_i are in J_i. Clearly

$$B_i^* = \bigcup_{j=1, j \neq i}^n A_i, \quad i = 1, \ldots, n.$$

A Goldie prime ring R of dimension n has a full ring Q of linear transformations of an n dimensional vector space over a field as a ring of quotients. This is a weaker result than Goldie’s theorem [1, Theorem 11]. It is well-known that the lattices $L^*_i(Q)$ and $L^*_i(R)$ are isomorphic under the correspondence $B \to B \cap R, B \in L^*_i(Q)$. (See [5] for proofs.)

Corresponding to the independent set $\{A_1, \ldots, A_n\}$ of atoms of $L^*_i(R)$ defined above is an independent set $\{C_1, \ldots, C_n\}$ of atoms of $L^*_i(Q)$. By [8, Proposition 5, p. 52], there exists a set $\{e_{ij}\}$ of n^2 matrix units in Q such that $C_i = e_{ii}Q, i = 1, \ldots, n$. Hence, $A_i = (e_{ii}Q) \cap R$ and $B_i^* = (\sum_{j \neq i} e_{ij}Q) \cap R, i = 1, \ldots, n$. Relative to the chosen set of matrix units of Q, we can find a field F commuting with the e_{ij} such that [5, Proposition 6, p. 52]
\[Q = \sum_{i,j=1}^{n} F_{ij} \cong (F)_n. \]

Since \(B_i' \) (in \(R \)) = \(B_i \) (in \(Q \)) \cap R and \(B_i' \) (in \(Q \)) \(\subseteq \) \(L_i^*(Q) \), evidently \(B_i' \) (in \(Q \)) \(\subseteq \) \(\mathbb{Q} e_{ii} \cap R \) for each \(i \). Actually, \(B_i = \mathbb{Q} e_{ii} \cap R \) for each \(i \) since \([\mathbb{Q} e_{ii} \cap R] B_i' = 0 \). Since \(A_i B_j \neq 0 \) for all \(i \) and \(j \), we see that

\[A_i \cap B_j = F_{ij} e_{ij}, \quad i, j = 1, \ldots, n \]

for some nonzero additive subgroups \(F_{ij} \) of \(F \) satisfying (1). Hence,

\[S = \sum_{i,j=1}^{n} F_{ij} e_{ij} \]

is a prime subring of \(R \).

Each nonzero left ideal of \(R \) has \(R \) as a right ring of quotients. In particular, \(B_i \leq R \) and \(L_i^*(B_i) \cong L_i^*(R) \). Therefore, \(\{ F_{11} e_{11}, \ldots, F_{n1} e_{n1} \} \) is an atomic basis of \(L_i^*(B_i) \) and \(F_{11} e_{11} + \cdots + F_{n1} e_{n1} \leq B_i \leq R \). Consequently, \(S \leq R \leq (F)_n \). Now we can apply 1.3 to obtain the following result.

3.1. Faith-Utumi Theorem. Every Goldie prime ring \(R \) of dimension \(n \) has associated with it a field \(F \) and a subring \(K \) of \(F \) such that \(K \leq F \) and \((K)_n \leq R \leq (F)_n \).

An immediate corollary of 3.1 is Goldie's theorem, which states that \((F)_n = \{ a b^{-1} | a, b \in R, b \ regular \} \). In fact, the following stronger result (due to Faith) holds.

3.2. Theorem. If \(R \) is a Goldie prime ring of dimension \(n \) and \(F \) is its associated field, then there exists a subring \(K \) of \(F \) such that

\[(F)_n = \{ a k^{-1} | a \in R, k \in K' \}. \]

Proof. If \(c \in (F)_n \), say \(c = \sum a_{ij} b_{ij}^{-1} e_{ij} \) where \(a_{ij}, b_{ij} \in K \), then \(c k = a \in (K)_n \) for any nonzero \(k \in \cap b_{ij} K \) and \(c = ak^{-1} \) as desired.

Bibliography

POWERS IN EIGHTH-GROUPS

SEYMOUR LIPSCHUTZ

1. Introduction. The purpose of this paper is to give an algorithm which decides whether or not an element in an eighth-group is a power. A group G is an eighth-group if it is finitely presented in the form

$$G = \langle a_1, \ldots, a_n; R_1(a_\lambda) = 1, \ldots, R_m(a_\lambda) = 1 \rangle,$$

where (i) each defining relator is cyclically reduced and (ii) if B_i and B_j are cyclic transforms of R_i and R_j, then less than one-eighth of the length of the shorter one cancels in the product $B_i^{m_1}B_j^{m_2}$, unless the product is unity. The notation in this paper is the same as that in [3]. Note that Lemma 3 and Lemma 4 in [3] hold for eighth-groups.

Reinhart [4] gives an algorithm to decide, among other things, whether or not elements in certain Fuchsian groups are powers. Note that the Fuchsian group $F(p; n_1, \ldots, n_d; m)$, see Greenberg [1], is an eighth-group if

$$4p + d + m, n_1, \ldots, n_d > 8.$$

Hence our algorithm holds for a somewhat wider class of groups and, furthermore, is purely algebraic.

Remark. Given any word V in a finitely presented group, it is possible to find a cyclically fully reduced word V^* conjugate to V by writing the word V in a circle and then reducing. Such a word V^* will be called a reduced cyclic transform of V.

2. The algorithm. First we prove a lemma about eighth-groups G. Here r denotes the length of the largest defining relator in G.

Received by the editors April 3, 1964.